ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of Galactic and Extragalactic Millimeter-Wavelength Transient Sources with SPT-3G

66   0   0.0 ( 0 )
 نشر من قبل Sam Guns
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-angular-resolution cosmic microwave background experiments provide a unique opportunity to conduct a survey of time-variable sources at millimeter wavelengths, a population which has primarily been understood through follow-up measurements of detections in other bands. Here we report the first results of an astronomical transient survey with the South Pole Telescope (SPT) using the SPT-3G camera to observe 1500 square degrees of the southern sky. The observations took place from March to November 2020 in three bands centered at 95, 150, and 220 GHz. This survey yielded the detection of fifteen transient events from sources not previously detected by the SPT. The majority are associated with variable stars of different types, expanding the number of such detected flares by more than a factor of two. The stellar flares are unpolarized and bright, in some cases exceeding 1 Jy, and have durations from a few minutes to several hours. Another population of detected events last for 2--3 weeks and appear to be extragalactic in origin. Though data availability at other wavelengths is limited, we find evidence for concurrent optical activity for two of the stellar flares. Future data from SPT-3G and forthcoming instruments will provide real-time detection of millimeter-wave transients on timescales of minutes to months.

قيم البحث

اقرأ أيضاً

X-ray binaries are cauldrons of fundamental physical processes which appear along practically the whole electromagnetic spectrum. The sub-class of X-ray transient sources show multifrequency behaviour which deserve particular attention in order to un derstand the causing physics. These binary systems consist of a compact star and an optical star, therefore there is a mutual influence between these two stars that drive the low energy (LE) (i.e. radio, IR, optical) and high energy (HE) (i.e. UV, X-ray, $gamma$-ray) processes. The LE processes are produced mostly on the optical star and the HE processes mostly on the compact star, typically a neutron star. Thus it appears evident that through the study of LE processes it is possible to understand also the HE processes and vice versa. In this paper we will discuss this problem starting from the experimental evidence of a delay between LE and HE processes detected for the first time in the X-ray/Be system A0535+26/HDE245770 (e.g. Giovannelli & Sabau-Graziati, 2011; Giovannelli, Bisnovatyi-Kogan & Klepnev, 2013 (here after GBK13); Giovannelli et al., 2015b). This delay is common in cataclysmic variables (CVs) and other binary systems with either a neutron star or a black hole. Since a delay between LE processes and HE processes has been experimentally observed in several active galactic nuclei (AGNs), we will discuss also the tidal disruption of stars by massive BHs, following the original idea of Rees (1998): stars in galactic nuclei can be captured or tidally disrupted by a central black hole. Some debris would be ejected at high speed, the remainder would be swallowed by the hole, causing a bright flare lasting at most a few years.
The SPT-3G receiver was commissioned in early 2017 on the 10-meter South Pole Telescope (SPT) to map anisotropies in the cosmic microwave background (CMB). New optics, detector, and readout technologies have yielded a multichroic, high-resolution, lo w-noise camera with impressive throughput and sensitivity, offering the potential to improve our understanding of inflationary physics, astroparticle physics, and growth of structure. We highlight several key features and design principles of the new receiver, and summarize its performance to date.
SPT-3G is the third survey receiver operating on the South Pole Telescope dedicated to high-resolution observations of the cosmic microwave background (CMB). Sensitive measurements of the temperature and polarization anisotropies of the CMB provide a powerful dataset for constraining cosmology. Additionally, CMB surveys with arcminute-scale resolution are capable of detecting galaxy clusters, millimeter-wave bright galaxies, and a variety of transient phenomena. The SPT-3G instrument provides a significant improvement in mapping speed over its predecessors, SPT-SZ and SPTpol. The broadband optics design of the instrument achieves a 430 mm diameter image plane across observing bands of 95 GHz, 150 GHz, and 220 GHz, with 1.2 arcmin FWHM beam response at 150 GHz. In the receiver, this image plane is populated with 2690 dual-polarization, tri-chroic pixels (~16000 detectors) read out using a 68X digital frequency-domain multiplexing readout system. In 2018, SPT-3G began a multiyear survey of 1500 deg$^{2}$ of the southern sky. We summarize the unique optical, cryogenic, detector, and readout technologies employed in SPT-3G, and we report on the integrated performance of the instrument.
The third-generation instrument for the 10-meter South Pole Telescope, SPT-3G, was first installed in January 2017. In addition to completely new cryostats, secondary telescope optics, and readout electronics, the number of detectors in the focal pla ne has increased by an order of magnitude from previous instruments to ~16,000. The SPT-3G focal plane consists of ten detector modules, each with an array of 269 trichroic, polarization-sensitive pixels on a six-inch silicon wafer. Within each pixel is a broadband, dual-polarization sinuous antenna; the signal from each orthogonal linear polarization is divided into three frequency bands centered at 95, 150, and 220 GHz by in-line lumped element filters and transmitted via superconducting microstrip to Ti/Au transition-edge sensor (TES) bolometers. Properties of the TES film, microstrip filters, and bolometer island must be tightly controlled to achieve optimal performance. For the second year of SPT-3G operation, we have replaced all ten wafers in the focal plane with new detector arrays tuned to increase mapping speed and improve overall performance. Here we discuss the TES superconducting transition temperature and normal resistance, detector saturation power, bandpasses, optical efficiency, and full array yield for the 2018 focal plane.
Several types of Galactic sources, like magnetars, microquasars, novae or pulsar wind nebulae flares, display transient emission in the X-ray band. Some of these sources have also shown emission at MeV--GeV energies. However, none of these Galactic t ransients have ever been detected in the very-high-energy (VHE; E$>$100 GeV) regime by any Imaging Air Cherenkov Telescope (IACT). The Galactic Transient task force is a part of the Transient Working group of the Cherenkov Telescope Array (CTA) Consortium. The task force investigates the prospects of detecting the VHE counterpart of such sources, as well as their study following Target of Opportunity (ToO) observations. In this contribution, we will show some of the results of exploring the capabilities of CTA to detect and observe Galactic transients; we assume different array configurations and observing strategies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا