ﻻ يوجد ملخص باللغة العربية
Web testing has long been recognized as a notoriously difficult task. Even nowadays, web testing still heavily relies on manual efforts while automated web testing is far from achieving human-level performance. Key challenges in web testing include dynamic content update and deep bugs hiding under complicated user interactions and specific input values, which can only be triggered by certain action sequences in the huge search space. In this paper, we propose WebExplor, an automatic end-to-end web testing framework, to achieve an adaptive exploration of web applications. WebExplor adopts curiosity-driven reinforcement learning to generate high-quality action sequences (test cases) satisfying temporal logical relations. Besides, WebExplor incrementally builds an automaton during the online testing process, which provides high-level guidance to further improve the testing efficiency. We have conducted comprehensive evaluations of WebExplor on six real-world projects, a commercial SaaS web application, and performed an in-the-wild study of the top 50 web applications in the world. The results demonstrate that in most cases WebExplor can achieve a significantly higher failure detection rate, code coverage, and efficiency than existing state-of-the-art web testing techniques. WebExplor also detected 12 previously unknown failures in the commercial web application, which have been confirmed and fixed by the developers. Furthermore, our in-the-wild study further uncovered 3,466 exceptions and errors.
Although there are many approaches to implement intrinsically motivated artificial agents, the combined usage of multiple intrinsic drives remains still a relatively unexplored research area. Specifically, we hypothesize that a mechanism capable of q
In recent years, we observe an increasing amount of software with machine learning components being deployed. This poses the question of quality assurance for such components: how can we validate whether specified requirements are fulfilled by a mach
In the context of End-to-End testing of web applications, automated exploration techniques (a.k.a. crawling) are widely used to infer state-based models of the site under test. These models, in which states represent features of the web application a
Hybrid testing combines fuzz testing and concolic execution. It leverages fuzz testing to test easy-to-reach code regions and uses concolic execution to explore code blocks guarded by complex branch conditions. However, its code coverage-centric desi
Responsive Web Design (RWD) enables web applications to adapt to the characteristics of different devices such as screen size which is important for mobile browsing. Today, the only W3C standard to support this adaptability is CSS media queries. Howe