ترغب بنشر مسار تعليمي؟ اضغط هنا

Beyond Self-Supervision: A Simple Yet Effective Network Distillation Alternative to Improve Backbones

213   0   0.0 ( 0 )
 نشر من قبل Cheng Cui
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, research efforts have been concentrated on revealing how pre-trained model makes a difference in neural network performance. Self-supervision and semi-supervised learning technologies have been extensively explored by the community and are proven to be of great potential in obtaining a powerful pre-trained model. However, these models require huge training costs (i.e., hundreds of millions of images or training iterations). In this paper, we propose to improve existing baseline networks via knowledge distillation from off-the-shelf pre-trained big powerful models. Different from existing knowledge distillation frameworks which require student model to be consistent with both soft-label generated by teacher model and hard-label annotated by humans, our solution performs distillation by only driving prediction of the student model consistent with that of the teacher model. Therefore, our distillation setting can get rid of manually labeled data and can be trained with extra unlabeled data to fully exploit capability of teacher model for better learning. We empirically find that such simple distillation settings perform extremely effective, for example, the top-1 accuracy on ImageNet-1k validation set of MobileNetV3-large and ResNet50-D can be significantly improved from 75.2% to 79% and 79.1% to 83%, respectively. We have also thoroughly analyzed what are dominant factors that affect the distillation performance and how they make a difference. Extensive downstream computer vision tasks, including transfer learning, object detection and semantic segmentation, can significantly benefit from the distilled pretrained models. All our experiments are implemented based on PaddlePaddle, codes and a series of improved pretrained models with ssld suffix are available in PaddleClas.



قيم البحث

اقرأ أيضاً

345 - Zhen Wu , Lijun Wu , Qi Meng 2021
Transformer architecture achieves great success in abundant natural language processing tasks. The over-parameterization of the Transformer model has motivated plenty of works to alleviate its overfitting for superior performances. With some explorat ions, we find simple techniques such as dropout, can greatly boost model performance with a careful design. Therefore, in this paper, we integrate different dropout techniques into the training of Transformer models. Specifically, we propose an approach named UniDrop to unites three different dropout techniques from fine-grain to coarse-grain, i.e., feature dropout, structure dropout, and data dropout. Theoretically, we demonstrate that these three dropouts play different roles from regularization perspectives. Empirically, we conduct experiments on both neural machine translation and text classification benchmark datasets. Extensive results indicate that Transformer with UniDrop can achieve around 1.5 BLEU improvement on IWSLT14 translation tasks, and better accuracy for the classification even using strong pre-trained RoBERTa as backbone.
The multilingual pre-trained language models (e.g, mBERT, XLM and XLM-R) have shown impressive performance on cross-lingual natural language understanding tasks. However, these models are computationally intensive and difficult to be deployed on reso urce-restricted devices. In this paper, we propose a simple yet effective distillation method (LightMBERT) for transferring the cross-lingual generalization ability of the multilingual BERT to a small student model. The experiment results empirically demonstrate the efficiency and effectiveness of LightMBERT, which is significantly better than the baselines and performs comparable to the teacher mBERT.
Knowledge distillation (KD) is widely used for training a compact model with the supervision of another large model, which could effectively improve the performance. Previous methods mainly focus on two aspects: 1) training the student to mimic repre sentation space of the teacher; 2) training the model progressively or adding extra module like discriminator. Knowledge from teacher is useful, but it is still not exactly right compared with ground truth. Besides, overly uncertain supervision also influences the result. We introduce two novel approaches, Knowledge Adjustment (KA) and Dynamic Temperature Distillation (DTD), to penalize bad supervision and improve student model. Experiments on CIFAR-100, CINIC-10 and Tiny ImageNet show that our methods get encouraging performance compared with state-of-the-art methods. When combined with other KD-based methods, the performance will be further improved.
Knowledge distillation, which involves extracting the dark knowledge from a teacher network to guide the learning of a student network, has emerged as an important technique for model compression and transfer learning. Unlike previous works that expl oit architecture-specific cues such as activation and attention for distillation, here we wish to explore a more general and model-agnostic approach for extracting richer dark knowledge from the pre-trained teacher model. We show that the seemingly different self-supervision task can serve as a simple yet powerful solution. For example, when performing contrastive learning between transformed entities, the noisy predictions of the teacher network reflect its intrinsic composition of semantic and pose information. By exploiting the similarity between those self-supervision signals as an auxiliary task, one can effectively transfer the hidden information from the teacher to the student. In this paper, we discuss practical ways to exploit those noisy self-supervision signals with selective transfer for distillation. We further show that self-supervision signals improve conventional distillation with substantial gains under few-shot and noisy-label scenarios. Given the richer knowledge mined from self-supervision, our knowledge distillation approach achieves state-of-the-art performance on standard benchmarks, i.e., CIFAR100 and ImageNet, under both similar-architecture and cross-architecture settings. The advantage is even more pronounced under the cross-architecture setting, where our method outperforms the state of the art CRD by an average of 2.3% in accuracy rate on CIFAR100 across six different teacher-student pairs.
Vision-and-Language Navigation (VLN) is a natural language grounding task where an agent learns to follow language instructions and navigate to specified destinations in real-world environments. A key challenge is to recognize and stop at the correct location, especially for complicated outdoor environments. Existing methods treat the STOP action equally as other actions, which results in undesirable behaviors that the agent often fails to stop at the destination even though it might be on the right path. Therefore, we propose Learning to Stop (L2Stop), a simple yet effective policy module that differentiates STOP and other actions. Our approach achieves the new state of the art on a challenging urban VLN dataset Touchdown, outperforming the baseline by 6.89% (absolute improvement) on Success weighted by Edit Distance (SED).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا