ﻻ يوجد ملخص باللغة العربية
Cycles, which can be found in many different kinds of networks, make the problems more intractable, especially when dealing with dynamical processes on networks. On the contrary, tree networks in which no cycle exists, are simplifications and usually allow for analyticity. There lacks a quantity, however, to tell the ratio of cycles which determines the extent of network being close to tree networks. Therefore we introduce the term Cycle Nodes Ratio (CNR) to describe the ratio of number of nodes belonging to cycles to the number of total nodes, and provide an algorithm to calculate CNR. CNR is studied in both network models and real networks. The CNR remains unchanged in different sized Erdos Renyi (ER) networks with the same average degree, and increases with the average degree, which yields a critical turning point. The approximate analytical solutions of CNR in ER networks are given, which fits the simulations well. Furthermore, the difference between CNR and two-core ratio (TCR) is analyzed. The critical phenomenon is explored by analysing the giant component of networks. We compare the CNR in network models and real networks, and find the latter is generally smaller. Combining the coarse-graining method can distinguish the CNR structure of networks with high average degree. The CNR is also applied to four different kinds of transportation networks and fungal networks, which give rise to different zones of effect. It is interesting to see that CNR is very useful in network recognition of machine learning.
We give an approximate solution to the difficult inverse problem of inferring the topology of an unknown network from given time-dependent signals at the nodes. For example, we measure signals from individual neurons in the brain, and infer how they
Stars and cycles are basic structures in network construction. The former has been well studied in network analysis, while the latter attracted rare attention. A node together with its neighbors constitute a neighborhood star-structure where the basi
The one-mode projecting is extensively used to compress the bipartite networks. Since the one-mode projection is always less informative than the bipartite representation, a proper weighting method is required to better retain the original informatio
We have recently introduced the ``thermal optimal path (TOP) method to investigate the real-time lead-lag structure between two time series. The TOP method consists in searching for a robust noise-averaged optimal path of the distance matrix along wh
We study the directed and weighted network in which the wards of London are vertices and two vertices are connected whenever there is at least one person commuting to work from a ward to another. Remarkably the in-strength and in-degree distribution