ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray spectroscopy in the microcalorimeter era III: line formation under Case A, Case B, Case C, and Case D in H- and He-like iron for a photoionized cloud

55   0   0.0 ( 0 )
 نشر من قبل Priyanka Chakraborty
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Future microcalorimeter X-ray observations will resolve spectral features in unmatched detail. Understanding the line formation processes in the X-rays deserves much attention. The purpose of this paper is to discuss such processes in the presence of a photoionizing source. Line formation processes in one and two-electron species are broadly categorized into four cases. Case A occurs when the Lyman line optical depths are very small and photoexcitation does not occur. Line photons escape the cloud without any scattering. Case B occurs when the Lyman-line optical depths are large enough for photons to undergo multiple scatterings. Case C occurs when a broadband continuum source strikes an optically thin cloud. The Lyman lines are enhanced by induced radiative excitation of the atoms/ions by continuum photons, also known as continuum pumping. A fourth less-studied scenario, where the Case B spectrum is enhanced by continuum pumping, is called Case D. Here, we establish the mathematical foundation of Cases A, B, C, and D in an irradiated cloud with Cloudy. We also show the total X-ray emission spectrum for all four cases within the energy range 0.1 - 10 keV at the resolving power of XRISM around 6 keV. Additionally, we show that a combined effect of electron scattering and partial blockage of continuum pumping reduces the resonance line intensities. Such reduction increases with column density and can serve as an important tool to measure the column density/optical depth of the cloud.


قيم البحث

اقرأ أيضاً

We update our prior work on the case B collisional-recombination spectrum of He I to incorporate textit{ab initio} photoionisation cross-sections. This large set of accurate, self-consistent cross-sections represents a significant improvement in He I emissivity calculations because it largely obviates the piecemeal nature that has marked all modern works. A second, more recent set of textit{ab initio} cross-sections is also available, but we show that those are less consistent with bound-bound transition probabilities than our adopted set. We compare our new effective recombination coefficients with our prior work and our new emissivities with those by other researchers, and we conclude with brief remarks on the effects of the present work on the He I error budget. Our calculations cover temperatures $5000 le T_e le 25000$ K and densities $10^1 le n_e le 10^{14}$ cm$^{-3}$. Full results are available online.
136 - E. Torresi 2009
All the observations available in the Chandra and XMM-Newton archives have been used to investigate the X-ray spectral properties of 3C 33. In this paper is presented a complete X-ray analysis of the nuclear emission of this narrow line radio galaxy. The broad band spectrum of 3C 33 is complex. The hard part resembles that of Seyfert 2 galaxies, with a heavily obscured nuclear continuum (N_H~10^23 cm^-2) and a prominent Fe Kalpha line. This represents the nuclear radiation directly observed in transmission through a cold circumnuclear gas. On the other hand an unabsorbed continuum plus emission lines seem to fit well the soft part of the spectrum (0.5-2 keV) suggesting that the jet does not significantly contribute to the X-ray emission. We discuss the possible collisional or photoionized origin of the gas that emits the soft X-ray lines. Our results, strengthened by optical spectroscopy favor the photoionization scenario.
94 - Vallia Antoniou 2010
Using Chandra, XMM-Newton, and optical photometric catalogs we study the young X-ray binary (XRB) populations of the Small Magellanic Cloud. We find that the Be/X-ray binaries (Be-XRBs) are observed in regions with star formation rate bursts ~25-60 M yr ago. The similarity of this age with the age of maximum occurrence of the Be phenomenon (~40 Myr) indicates that the presence of a circumstellar decretion disk plays a significant role in the number of observed XRBs in the 10-100 Myr age range. We also find that regions with strong but more recent star formation (e.g., the Wing) are deficient in Be-XRBs. By correlating the number of observed Be-XRBs with the formation rate of their parent populations, we measure a Be-XRB production rate of ~1 system per 3 x 10^(-3) M$_{odot}$/yr. Finally, we use the strong localization of the Be-XRB systems in order to set limits on the kicks imparted on the neutron star during the supernova explosion.
77 - Felipe O. Alves 2020
While it is widely accepted that planets are formed in protoplanetary disks, there is still much debate on when this process happens. In a few cases protoplanets have been directly imaged, but for the vast majority of systems, disk gaps and cavities -- seen especially in dust continuum observations -- have been the strongest evidence of recent or on-going planet formation. We present ALMA observations of a nearly edge-on ($i = 75^{circ}$) disk containing a giant gap seen in dust but not in $^{12}$CO gas. Inside the gap, the molecular gas has a warm (100 K) component coinciding in position with a tentative free-free emission excess observed with the VLA. Using 1D hydrodynamic models, we find the structure of the gap is consistent with being carved by a planet with 4-70 $M_{rm Jup}$. The coincidence of free-free emission inside the planet-carved gap points to the planet being very young and/or still accreting. In addition, the $^{12}$CO observations reveal low-velocity large scale filaments aligned with the disk major axis and velocity coherent with the disk gas that we interpret as ongoing gas infall from the local ISM. This system appears to be an interesting case where both a star (from the environment and the disk) and a planet (from the disk) are growing in tandem.
We present a dynamical study of the narrow-line regions in two nearby QSO2s. We construct dynamical models based on detailed photoionization models of the emission-line gas, including the effects of internal dust, to apply to observations of large-sc ale outflows from these AGNs. We use Mrk 477 and Mrk 34 in order to test our models against recent HST STIS observations of [O III] emission-line kinematics since these AGNs possess more energetic outflows than found in Seyfert galaxies. We find that the outflows within 500 pc are consistent with radiative acceleration of dusty gas, however, the outflows in Mrk 34 are significantly more extended and may not be directly accelerated by radiation. We characterize the properties of X-ray winds found from the expansion of [O III]-emitting gas close to the black hole. We show that such winds possess the kinetic energy density to disturb [O III] gas at 1.8 kpc, and have sufficient energy to entrain the [O III] clouds at 1.2 kpc. Assuming that the X-ray wind possesses the same radial mass distribution as the [O III] gas, we find that the peak kinetic luminosity for this wind is 2% of Mrk 34s bolometric luminosity, which is in the 0.5% - 5% range required by some models for efficient feedback. Our work shows that, although the kinetic luminosity as measured from [O III]-emitting gas is frequently low, X-ray winds may provide more than one order of magnitude higher kinetic power.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا