ترغب بنشر مسار تعليمي؟ اضغط هنا

Specific loss power of magnetic nanoparticles (fluid) hyperthermia in non-adiabatic conditions

56   0   0.0 ( 0 )
 نشر من قبل Felipe Bohn
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the magnetic nanoparticles (fluid) hyperthermia in non-adiabatic conditions through the calorimetric method. Specifically, we propose a theoretical approach to magnetic hyperthermia from a thermodynamic point of view. To test the robustness of the approach, we perform hyperthermia experiments and analyze the thermal behavior of magnetite and magnesium ferrite magnetic nanoparticles dispersed in water submitted to an alternating magnetic field. From our findings, besides estimating the specific loss power value from a non-adiabatic process, thus enhancing the accuracy in the determination of this quantity, we provide physical meaning to parameters found in literature that still remained not fully understood, and bring to light how they can be obtained experimentally.

قيم البحث

اقرأ أيضاً

Magnetic nanoparticles are promising systems for biomedical applications and in particular for Magnetic Fluid Hyperthermia, a promising therapy that utilizes the heat released by such systems to damage tumor cells. We present an experimental study of the physical properties that influences the capability of heat release, i.e. the Specific Loss Power, SLP, of three biocompatible ferrofluid samples having a magnetic core of maghemite with different core diameter d= 10.2, 14.6 and 19.7 nm. The SLP was measured as a function of frequency f and intensity of the applied alternating magnetic field H, and it turned out to depend on the core diameter, as expected. The results allowed us to highlight experimentally that the physical mechanism responsible for the heating is size-dependent and to establish, at applied constant frequency, the phenomenological functional relationship SLP=cH^x, with 2<x<3 for all samples. The x-value depends on sample size and field frequency/ intensity, here chosen in the typical range of operating magnetic hyperthermia devices. For the smallest sample, the effective relaxation time Teff=19.5 ns obtained from SLP data is in agreement with the value estimated from magnetization data, thus confirming the validity of the Linear Response Theory model for this system at properly chosen field intensity and frequency.
We report maximized specific loss power and intrinsic loss power approaching theoretical limits for AC magnetic field heating of nanoparticles. This is achieved by engineering the effective magnetic anisotropy barrier of nanoparticles via alloying of hard and soft ferrites. 22 nm Co0.03Mn0.28Fe2.7O4/SiO2 NPs reached a specific loss power value of 3417 W/gmetal at a field of 33 kA/m and 380 kHz. Biocompatible Zn0.3Fe2.7O4/SiO2 nanoparticles achieved specific loss power of 500 W/gmetal and intrinsic loss power of 26.8 nHm2/kg at field parameters of 7 kA/m and 380 kHz, below the clinical safety limit. Magnetic bone cement achieved heating adequate for bone tumor hyperthermia, incorporating ultralow dosage of just 1 wt% of nanoparticles. In cellular hyperthermia experiments, these nanoparticles demonstrated high cell death rate at low field parameters. Zn0.3Fe2.7O4/SiO2 nanoparticles show cell viabilities above 97% at concentrations up to 0.5 mg/ml within 48 hrs, suggesting toxicity lower than that of magnetite.
Magnetic nanoparticle based hyperthermia emerged as a potential tool for treating malignant tumours. The efficiency of the method relies on the knowledge of magnetic properties of the samples; in particular, knowledge of the frequency dependent compl ex magnetic susceptibility is vital to optimize the irradiation conditions and to provide feedback for material science developments. We study the frequency-dependent magnetic susceptibility of an aqueous ferrite suspension for the first time using non-resonant and resonant radiofrequency reflectometry. We identify the optimal measurement conditions using a standard solenoid coil, which is capable of providing the complex magnetic susceptibility up to 150 MHz. The result matches those obtained from a radiofrequency resonator for a few discrete frequencies. The agreement between the two different methods validates our approach. Surprisingly, the dynamic magnetic susceptibility cannot be explained by an exponential magnetic relaxation behavior even when we consider a particle size-dependent distribution of the relaxation parameter.
Nanomagnetic hyperthermia (NMH) is intensively studied with the prospect of cancer therapy. A major challenge is to determine the dissipated power during in vivo conditions and conventional methods are either invasive or inaccurate. We present a non- calorimetric method which yields the heat absorbed during hyperthermia: it is based on accurately measuring the quality factor change of a resonant radio frequency circuit which is employed for the irradiation. The approach provides the absorbed power in real-time, without the need to monitor the sample temperature as a function of time. As such, it is free from the problems caused by the non-adiabatic heating conditions of the usual calorimetry. We validate the method by comparing the dissipated power with a conventional calorimetric measurement. We present the validation for two types of resonators with very different filling factors: a solenoid and a so-called birdcage coil. The latter is a volume coil, which is generally used in magnetic resonance imaging (MRI) under in vivo condition. The presented method therefore allows to effectively combine MRI and thermotherapy and is thus readily adaptable to existing imaging hardware.
We describe a low-cost and simple setup for hyperthermia measurements on colloidal solutions of magnetic nanoparticles (ferrofluids) with a frequency-adjustable magnetic field in the range 5-500 kHz produced by an electromagnet. By optimizing the gen eral conception and each component (nature of the wires, design of the electromagnet), a highly efficient setup is obtained. For instance, in a useful gap of 1.1 cm, a magnetic field of 4.8 mT is generated at 100 kHz and 500 kHz with an output power of 3.4 W and 75 W, respectively. A maximum magnetic field of 30 mT is obtained at 100 kHz. The temperature of the colloidal solution is measured using optical fiber sensors. To remove contributions due to heating of the electromagnet, a differential measurement is used. In this configuration the sensitivity is better than 1.5 mW at 100 kHz and 19.3 mT. This setup allows one to measure weak heating powers on highly diluted colloidal solutions. The hyperthermia characteristics of a solution of Fe nanoparticles are described, where both the magnetic field and the frequency dependence of heating power have been measured.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا