ﻻ يوجد ملخص باللغة العربية
We investigate the surface- and bulk-like properties of the pristine (110)-surface of silver using threshold photoemission by excitation with light of 5.9 eV. Using a momentum microscope, we identified two distinct transitions along the $overline{Gamma},overline{textrm{Y}}$-direction of the crystal. The first one is a so far unknown surface resonance for the (110) noble metal surface, exhibiting an exceptionally large bulk character, that has so far been elusive in surface sensitive experiments. The second one stems from the well known bulk-like Mahan cone oriented along the $Gamma L$-direction inside the crystal but projected onto the (110)-surface cut. The existence of the new state is confirmed by photocurrent calculations and its character analyzed.
Deposition/removal of metal atoms on the hex reconstructed (100) surface of Au, Pt and Ir should present intriguing aspects, since a new island implies hex -> square deconstruction of the substrate, and a new crater the square -> hex reconstruction o
The electronic properties of a semi-infinite metal surface without a bulk gap are studied by a formalism able to account for the continuous spectrum of the system. The density of states at the surface is calculated within the $GW$ approximation of ma
After the early suggestion by John Pendry to probe unoccupied bands at surfaces through the time reversal of the photoemission process, the inverse-photoemission technique yielded the first conclusive experimental evidence for the existence of image-
We investigate some surfaces of a paradigmatic sp bonded metal--namely, Al(110), Al(100), and Al(111)--by means of the electron localization function (ELF), implemented in a first-principle pseudopotential framework. ELF is a ground-state property wh
Realistic oxide materials are often semiconductors, in particular at elevated temperatures, and their surfaces contain undercoordiated atoms at structural defects such as steps and corners. Using hybrid density-functional theory and ab initio atomist