ﻻ يوجد ملخص باللغة العربية
The radio nebula W50 is a unique object interacting with the jets of the microquasar SS433. The SS433/W50 system is a good target for investigating the energy of cosmic-ray particles accelerated by galactic jets. We report observations of radio nebula W50 conducted with the NSFs Karl G. Jansky Very Large Array (VLA) in the L band (1.0 -- 2.0 GHz). We investigate the secular change of W50 on the basis of the observations in 1984, 1996, and 2017, and find that most of its structures were stable for 33 years. We revise the upper limit velocity of the eastern terminal filament by half to 0.023$c$ assuming a distance of 5.5 kpc. We also analyze the observational data of the Arecibo Observatory 305-m telescope and identify the HI cavity around W50 in the velocity range 33.77 km s$^{-1}$ -- 55.85 km s$^{-1}$. From this result, we estimate the maximum energy of the cosmic-ray protons accelerated by the jet terminal region to be above 10$^{15.5}$ eV. We also use the luminosity of the gamma-rays in the range 0.5 -- 10 GeV to estimate the total energy of accelerated protons below 5.2 $times$ 10$^{48}$ erg.
A new class of low-power compact radio sources with limited jet structures, named FR0, is emerging from recent radio-optical surveys. This abundant population of radio galaxies, five times more numerous than FRIs in the local Universe (z$<$0.05), rep
We report the observation of sixteen cosmic ray events of mean energy of 1.5 x 10^{19} eV, via radio pulses originating from the interaction of the cosmic ray air shower with the Antarctic geomagnetic field, a process known as geosynchrotron emission
The microquasar SS433 features the most energetic jets known in our Galaxy. A large fraction of the jet kinetic power is delivered to the surrounding W50 nebula at the jet termination shock, from which high-energy emission and cosmic-ray production h
The W50/SS433 system is an unusual Galactic outflow-driven object of debatable origin. We have used the Australia Telescope Compact Array (ATCA) to observe a new 198 pointing mosaic, covering $3^circ times 2^circ$, and present the highest-sensitivity
Galactic sites of acceleration of cosmic rays to energies of order 10^15 eV and higher, dubbed PeVatrons, reveal themselves by recently discovered gamma radiation of energies above 100 TeV. However, joint gamma-ray and neutrino production, which mark