ﻻ يوجد ملخص باللغة العربية
The galaxy cluster MS 0735.6+7421 hosts two large X-ray cavities, filled with radio emission, where a decrease of the Sunyaev-Zeldovich (SZ) effect has been detected, without establishing if its origin is thermal (from a gas with very high temperature) or non-thermal. In this paper we study how thermal and non-thermal contributions to the SZ effect in the cavities are related; in fact, Coulomb interactions with the thermal gas modify the spectrum of low energy non-thermal electrons, which dominate the non-thermal SZ effect; as a consequence, the intensity of the non-thermal SZ effect is stronger for lower density of the thermal gas inside the cavity. We calculate the non-thermal SZ effect in the cavities as a function of the thermal density, and compare the SZ effects produced by thermal and non-thermal components, and with the one from the external Intra Cluster Medium (ICM), searching for the best frequency range where it is possible to disentangle the different contributions. We find that for temperatures inside the cavities higher than $sim1500$ keV the non-thermal SZ effect is expected to dominate on the thermal one, particularly at high frequencies ($ u>500$ GHz), where it can also be a non-negligible fraction of the SZ effect from the external ICM. We also discuss the possible sources of astrophysical bias (as kinetic SZ effect and foreground emission from Galactic dust) and possible ways to address them, as well as necessary improvements in the modeling of the properties of cavities and the ICM.
Outbursts from active galactic nuclei (AGN) can inflate cavities in the intracluster medium (ICM) of galaxy clusters and are believed to play the primary role in offsetting radiative cooling in the ICM. However, the details of how the energy from AGN
[Abridged] Inverse Compton scattering of CMB fluctuations off cosmic electron plasma generates a polarization of the associated Sunyaev-Zeldovich (SZ) effect. This signal has been studied so far mostly in the non-relativistic regime and for a thermal
A recent stacking analysis of Planck HFI data of galaxy clusters (Hurier 2016) allowed to derive the cluster temperatures by using the relativistic corrections to the Sunyaev-Zeldovich effect (SZE). However, the temperatures of high-temperature clust
In this work we calculate the Sunyaev-Zeldovich (SZ) effect due to the $e^+e^-$ from dark matter (DM) annihilation in galaxy clusters. Two candidates of DM particle, (1) the weakly-interacting massive particle (WIMP) and (2) the light dark matter (LD
At high angular frequencies the thermal Sunyaev-Zeldovich (tSZ) effect constitutes the dominant signal in the CMB sky. The tSZ effect is caused by large scale pressure fluctuations in the baryonic distribution in the Universe so its statistical prope