ترغب بنشر مسار تعليمي؟ اضغط هنا

Floquet scattering of quadratic band-touching semimetals through a time-periodic potential well

50   0   0.0 ( 0 )
 نشر من قبل Ipsita Mandal
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider tunneling of quasiparticles through a rectangular quantum well, subject to periodic driving. The quasiparticles are the itinerant charges in two-dimensional and three-dimensional semimetals having a quadratic band-touching (QBT) point in the Brillouin zone. In order to analyze the time-periodic Hamiltonian, we assume a non-adiabatic limit, where the Floquet theorem is applicable. By deriving the Floquet scattering matrices, we chalk out the transmission and shot noise spectra of the QBT semimetals. The spectra show Fano resonances, which we identify with the (quasi)bound states of the systems.



قيم البحث

اقرأ أيضاً

We investigate the response of 3D Luttinger semimetals to localized charge and spin impurities as a function of doping. The strong spin-orbit coupling of these materials strongly influences the Friedel oscillations and RKKY interactions. This can be seen at short distances with an $1/r^4$ divergence of the responses, and anisotropic behavior. Certain of the spin-orbital signatures are robust to temperature, even if the charge and spin oscillations are smeared out, and give an unusual diamagnetic Pauli susceptibility. We compare our results to the experimental literature on the bismuth-based half-Heuslers such as YPtBi and on the pyrochlore iridate Pr$_2$Ir$_2$O$_7$.
We investigate the superconductivity of 3D Luttinger semimetals, such as YPtBi, where Cooper pairs are constituted of spin-3/2 quasiparticles. Various pairing mechanisms have already been considered for these semimetals, such as from polar phonons mo des, and in this work we explore pairing from the screened electron-electron Coulomb repulsion. In these materials, the small Fermi energy and the spin-orbit coupling strongly influence how charge fluctuations can mediate pairing. We find the superconducting critical temperature as a function of doping for an s-wave order parameter, and determine its sensitivity to changes in the dielectric permittivity. Also, we discuss how order parameters other than s-wave may lead to a larger critical temperature, due to spin-orbit coupling.
Lifshitz transitions in two 2D systems with a single quadratic band touching point as the chemical potential is varied have been studied here. The effects of interactions have been studied using the renormalization group (RG) and it is found that at the transition a repulsive interaction is marginally relevant and an attractive interaction is marginally irrelevant. We corroborate the results obtained from the RG calculation by studying a microscopic model whose ground state and Greens functions can be obtained exactly. We find that away from the transition, the system displays an instability towards forming and excitonic condensate.
The charge flow from a single C60 molecule to another one has been probed. The conformation and electronic states of both molecules on the contacting electrodes have been characterized using a cryogenic scanning tunneling microscope. While the contac t conductance of a single molecule between two Cu electrodes can vary up to a factor of three depending on electrode geometry, the conductance of the C60-C60 contact is consistently lower by two orders of magnitude. First-principles transport calculations reproduce the experimental results, allow a determination of the actual C60-C60 distances, and identify the essential role of the intermolecular link in bi- and trimolecular chains.
The recent discoveries of higher-order topological insulators (HOTIs) have shifted the paradigm of topological materials, which was previously limited to topological states at boundaries of materials, to those at boundaries of boundaries, such as cor ners . So far, all HOTI realisations have assumed static equilibrium described by time-invariant Hamiltonians, without considering time-variant or nonequilibrium properties. On the other hand, there is growing interest in nonequilibrium systems in which time-periodic driving, known as Floquet engineering, can induce unconventional phenomena including Floquet topological phases and time crystals. Recent theories have attemped to combine Floquet engineering and HOTIs, but there has thus far been no experimental realisation. Here we report on the experimental demonstration of a two-dimensional (2D) Floquet HOTI in a three-dimensional (3D) acoustic lattice, with modulation along z axis serving as an effective time-dependent drive. Direct acoustic measurements reveal Floquet corner states that have time-periodic evolution, whose period can be even longer than the underlying drive, a feature previously predicted for time crystals. The Floquet corner states can exist alongside chiral edge states under topological protection, unlike previous static HOTIs. These results demonstrate the unique space-time dynamic features of Floquet higher-order topology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا