ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical physics of superconductivity in layered yttrium carbide halides from first principles

72   0   0.0 ( 0 )
 نشر من قبل Ryosuke Akashi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a thorough first-principles study on superconductivity in yttrium carbide halide Y$_2$$X_2$C$_2$ ($X$=Cl, Br, I) whose maximum transition temperature ($T_{rm c}$) amounts to $sim$10 K. A detailed analysis on the optimized crystal structures reveals that the Y$_2$C$_2$ blocks are compressed uniaxially upon the halogen substitution from Cl, Br to I, contrary to the monotonic expansion of the lattice vectors. With a nonempirical method based on the density functional theory for superconductors within the conventional phonon mechanism, we successfully reproduce the halogen dependence of $T_{rm c}$. Anomalously enhanced coupling of one C$_2$ libration mode is observed in Y$_2$I$_2$C$_2$, which imply possible departure from the conventional pairing picture. Utilizing the Wannier representation of the electron-phonon coupling, we show that the halogen electronic orbitals and ionic vibrations scarcely contribute to the superconducting pairing. The halogen dependence of this system is hence an indirect effect of the halogen ions through the uniaxial compressive force on the superconducting Y$_2$C$_2$ blocks. We thus establish a quantitatively reliable picture of the superconducting physics of this system, extracting a unique effect of the atomic substitution which is potentially applicable to other superconductors.

قيم البحث

اقرأ أيضاً

A recent experiment reported the first rare-earth binary oxide superconductor LaO ($T_c $ $sim$ 5 K) with a rock-salt structure [K. Kaminaga et al., J. Am. Chem. Soc. 140, 6754 (2018)]. Correspondingly, the underlying superconducting mechanism in LaO needs theoretical elucidation. Based on first-principles calculations on the electronic structure, lattice dynamics, and electron-phonon coupling of LaO, we show that the superconducting pairing in LaO belongs to the conventional Bardeen-Cooper-Schrieffer (BCS) type. Remarkably, the electrons and phonons of the heavy La atoms, instead of those of the light O atoms, contribute most to the electron-phonon coupling. We further find that both the biaxial tensile strain and the pure electron doping can enhance the superconducting $T_c$ of LaO. With the synergistic effect of electron doping and tensile strain, the $T_c$ could be even higher, for example, 11.11 K at a doping of 0.2 electrons per formula unit and a tensile strain of $4%$. Moreover, our calculations show that the superconductivity in LaO thin film remains down to the trilayer thickness with a $T_c$ of 1.4 K.
324 - Christoph Heil 2019
We report ab-initio calculations of the superconducting properties of two high-Tc sodalite-like clathrate yttrium hydrides, YH6 and YH10, within the fully anisotropic ME theory, including Coulomb corrections. For both compounds we find almost isotrop ic superconducting gaps, resulting from a uniform distribution of the electron-phonon coupling over phonon modes and electronic states of mixed Y and H character. The Coulomb screening is rather weak, resulting in a Morel-Anderson pseudopotential mu*= 0:11, at odds with claims of unusually large Tc in lanthanum hydrides. The corresponding critical temperatures at 300 GPa exceed room temperature (Tc = 290 K and 310 K for YH6 and YH10), in agreement with a previous isotropic-gap calculation. The different response of these two compounds to external pressure, along with a comparison to low-Tc superconducting YH3, may inspire strategies to improve the superconducting properties of this class of hydrides.
Very recently, as an important step in the development of layered Fe-free pnictide-oxide superconductors, the new phase BaTi2Bi2O was discovered which has the highest TC (about 4.6 K) among all related non-doped systems. In this Letter, we report for the first time the electronic bands, Fermi surface topology, total and partial densities of electronic states for BaTi2Bi2O obtained by means of the first-principles FLAPW-GGA calculations. The inter-atomic bonding picture is described as a high-anisotropic mixture of metallic, covalent, and ionic contributions. Besides, the structural and electronic factors, which can be responsible for the increased transition temperature for BaTi2Bi2O (as compared with related pnictide-oxides BaTi2As2O and BaTi2Sb2O), are discussed.
In this work, global search for crystal structures of ternary Mg-Sc-H hydrides (Mg$_x$Sc$_y$H$_z$) under high pressure ($100 le P le 200$ GPa) were performed using the evolutionary algorithm and first-principles calculations. Based on them, we comput ed the thermodynamic convex hull and pressure-dependent phase diagram of Mg$_x$Sc$_y$H$_z$ for $z/(x+y) < 4$. We have identified the stable crystal structures of four thermodynamically stable compounds with the higher hydrogen content, i.e., $Rbar{3}m$-MgScH$_{6}$, $C2/m$-Mg$_{2}$ScH$_{10}$, $Immm$-MgSc$_{2}$H$_{9}$ and $Pmbar{3}m$-Mg(ScH$_{4}$)$_{3}$. Their superconducting transition temperatures were computationally predicted by the McMillan-Allen-Dynes formula combined with first-principles phonon calculations. They were found to exhibit superconductivity; among them, $Rbar{3}m$-MgScH$_{6}$ was predicted to have the highest $T_{c}$ (i.e. 23.34 K) at 200 GPa.
106 - Yu Liu , Ran Ang , Wenjian Lu 2013
Layered transition-metal dichalcogenides 1T-TaS2-xSex (0<=x<=2) single crystals have been successfully fabricated by using a chemical vapor transport technique in which Ta locates in octahedral coordination with S and Se atoms. This is the first supe rconducting example by the substitution of S site, which violates an initial rule based on the fact that superconductivity merely emerges in 1T-TaS2 by applying the high pressure or substitution of Ta site. We demonstrate the appearance of a series of electronic states in 1T-TaS2-xSex with Se content. Namely, the Mott phase melts into a nearly commensurate charge-density-wave (NCCDW) phase, superconductivity in a wide x range develops within the NCCDW state, and finally commensurate charge-density-wave (CCDW) phase reproduces for heavy Se content. The present results reveal that superconductivity is only characterized by robust Ta 5d band, demonstrating the universal nature in 1T-TaS2 systems that superconductivity and NCCDW phase coexist in the real space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا