ترغب بنشر مسار تعليمي؟ اضغط هنا

Physics of Superluminous Supernovae

263   0   0.0 ( 0 )
 نشر من قبل Ke-Jung Chen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ke-Jung Chen




اسأل ChatGPT حول البحث

Understanding how massive stars die as supernovae is a crucial question in modern astrophysics. Supernovae are powerful stellar explosions and key drivers in the cosmic baryonic cycles by injecting their explosion energy and heavy elements to the interstellar medium that forms new stars. After decades of effort, astrophysicists have built up a stand model for the explosion mechanism of massive stars. However, this model is challenged by new kinds of stellar explosions discovered in the recent transit surveys. In particular, the new population called superluminous supernovae, which are a hundred times brighter than typical supernovae, is revolutionizing our understanding of supernovae. New studies suggest the superluminous supernovae are associated with the unusual demise of very massive stars and their extreme supernovae powered by the radioactive isotopes or compact objects formed after the explosion. Studying these supernovae fills a gap of knowledge between the death of massive stars and their explosions; furthermore, we may apply their intense luminosity to light up the distant universe. This paper aims to provide a timely review of superluminous supernovae physics, focusing on the latest development of their theoretical models.



قيم البحث

اقرأ أيضاً

Supernovae (SNe) are the most brilliant optical stellar-class explosions. Over the past two decades, several optical transient survey projects discovered more than $sim 100$ so-called superluminous supernovae (SLSNe) whose peak luminosities and radia ted energy are $gtrsim 7times 10^{43}$ erg s$^{-1}$ and $gtrsim 10^{51}$ erg, at least an order of magnitude larger than that of normal SNe. According to their optical spectra features, SLSNe have been split into two broad categories of type I that are hydrogen-deficient and type II that are hydrogen-rich. Investigating and determining the energy sources of SLSNe would be of outstanding importance for understanding the stellar evolution and explosion mechanisms. The energy sources of SLSNe can be determined by analyzing their light curves (LCs) and spectra. The most prevailing models accounting for the SLSN LCs are the $^{56}$Ni cascade decay model, the magnetar spin-down model, the ejecta-CSM interaction model, and the jet-ejecta interaction model. In this textit{review}, we present several energy-source models and their different combinations.
107 - Ke-Jung Chen 2016
Previous studies have shown that the radiation emitted by a rapidly rotating magnetar embedded in a young supernova can greatly amplify its luminosity. These one-dimensional studies have also revealed the existence of an instability arising from the piling up of radiatively accelerated matter in a thin dense shell deep inside the supernova. Here we examine the problem in two dimensions and find that, while instabilities cause mixing and fracture this shell into filamentary structures that reduce the density contrast, the concentration of matter in a hollow shell persists. The extent of the mixing depends upon the relative energy input by the magnetar and the kinetic energy of the inner ejecta. The light curve and spectrum of the resulting supernova will be appreciably altered, as will the appearance of the supernova remnant, which will be shellular and filamentary. A similar pile up and mixing might characterize other events where energy is input over an extended period by a centrally concentrated source, e.g. a pulsar, radioactive decay, a neutrino-powered wind, or colliding shells. The relevance of our models to the recent luminous transient ASASSN-15lh is briefly discussed.
86 - Ke-Jung Chen 2019
A rapidly spinning magnetar in a young supernova (SN) can produce a superluminous transient by converting a fraction of its rotational energy into radiation. Here, we present the first three-dimensional hydrodynamical simulations ever performed of a magnetar-powered SN in the circumstellar medium formed by the ejection of the outer layers of the star prior to the blast. We find that hydrodynamical instabilities form on two scales in the ejecta, not just one as in ordinary core-collapse SNe: in the hot bubble energized by the magnetar and in the forward shock of the SN as it plows up ambient gas. Pressure from the bubble also makes the instabilities behind the forward shock more violent and causes more mixing in the explosion than in normal SNe, with important consequences for the light curves and spectra of the event that cannot be captured by one-dimensional models. We also find that the magnetar can accelerate Ca and Si to velocities of $sim $ 12000 km/s and account for their broadened emission lines in observations. Our simulations also reveal that energy from even weak magnetars can accelerate iron-group elements deep in the ejecta to $5000-7000$ km/s and explain the high-velocity Fe observed at early times in some core-collapse SNe such as SN 1987A.
We present a sample of 21 hydrogen-free superluminous supernovae (SLSNe-I), and one hydrogen-rich SLSN (SLSN-II) detected during the five-year Dark Energy Survey (DES). These SNe, located in the redshift range 0.220<z<1.998, represent the largest hom ogeneously-selected sample of SLSN events at high redshift. We present the observed g,r, i, z light curves for these SNe, which we interpolate using Gaussian Processes. The resulting light curves are analysed to determine the luminosity function of SLSN-I, and their evolutionary timescales. The DES SLSN-I sample significantly broadens the distribution of SLSN-I light curve properties when combined with existing samples from the literature. We fit a magnetar model to our SLSNe, and find that this model alone is unable to replicate the behaviour of many of the bolometric light curves. We search the DES SLSN-I light curves for the presence of initial peaks prior to the main light-curve peak. Using a shock breakout model, our Monte Carlo search finds that 3 of our 14 events with pre-max data display such initial peaks. However, 10 events show no evidence for such peaks, in some cases down to an absolute magnitude of <-16, suggesting that such features are not ubiquitous to all SLSN-I events. We also identify a red pre-peak feature within the light curve of one SLSN, which is comparable to that observed within SN2018bsz.
75 - P. A. Mazzali 2016
The near-maximum spectra of most superluminous supernovae that are not dominated by interaction with a H-rich CSM (SLSN-I) are characterised by a blue spectral peak and a series of absorption lines which have been identified as OII. SN2011kl, associa ted with the ultra-long gamma-ray burst GRB111209A, also had a blue peak but a featureless optical/UV spectrum. Radiation transport methods are used to show that the spectra (not including SN2007bi, which has a redder spectrum at peak, like ordinary SNe Ic) can be explained by a rather steep density distribution of the ejecta, whose composition appears to be typical of carbon-oxygen cores of massive stars which can have low metal content. If the photospheric velocity is ~10000-15000 km/s, several lines form in the UV. OII lines, however, arise from very highly excited lower levels, which require significant departures from Local Thermodynamic Equilibrium to be populated. These SLSNe are not thought to be powered primarily by 56Ni decay. An appealing scenario is that they are energised by X-rays from the shock driven by a magnetar wind into the SN ejecta. The apparent lack of evolution of line velocity with time that characterises SLSNe up to about maximum is another argument in favour of the magnetar scenario. The smooth UV continuum of SN2011kl requires higher ejecta velocities (~20000 km/s): line blanketing leads to an almost featureless spectrum. Helium is observed in some SLSNe after maximum. The high ionization near maximum implies that both He and H may be present but not observed at early times. The spectroscopic classification of SLSNe should probably reflect that of SNe Ib/c. Extensive time coverage is required for an accurate classification.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا