ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Quantized Average Consensus over Static and Dynamic Directed Graphs

146   0   0.0 ( 0 )
 نشر من قبل Apostolos Rikos
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study the distributed average consensus problem in multi-agent systems with directed communication links that are subject to quantized information flow. Specifically, we present and analyze a distributed averaging algorithm which operates exclusively with quantized values (i.e., the information stored, processed and exchanged between neighboring agents is subject to deterministic uniform quantization) and relies on event-driven updates (e.g., to reduce energy consumption, communication bandwidth, network congestion, and/or processor usage). The main idea of the proposed algorithm is that each node (i) models its initial state as two quantized fractions which have numerators equal to the nodes initial state and denominators equal to one, and (ii) transmits one fraction randomly while it keeps the other stored. Then, every time it receives one or more fractions, it averages their numerators with the numerator of the fraction it stored, and then transmits them to randomly selected out-neighbors. We characterize the properties of the proposed distributed algorithm and show that its execution, on any static and strongly connected digraph, allows each agent to reach in finite time a fixed state that is equal (within one quantisation level) to the average of the initial states. We extend the operation of the algorithm to achieve finite-time convergence in the presence of a dynamic directed communication topology subject to some connectivity conditions. Finally, we provide examples to illustrate the operation, performance, and potential advantages of the proposed algorithm. We compare against state-of-the-art quantized average consensus algorithms and show that our algorithms convergence speed significantly outperforms most existing protocols.



قيم البحث

اقرأ أيضاً

In this paper, we consider the problem of privacy preservation in the average consensus problem when communication among nodes is quantized. More specifically, we consider a setting where some nodes in the network are curious but not malicious and th ey try to identify the initial states of other nodes based on the data they receive during their operation (without interfering in the computation in any other way), while some nodes in the network want to ensure that their initial states cannot be inferred exactly by the curious nodes. We propose two privacy-preserving event-triggered quantized average consensus algorithms that can be followed by any node wishing to maintain its privacy and not reveal the initial state it contributes to the average computation. Every node in the network (including the curious nodes) is allowed to execute a privacy-preserving algorithm or its underlying average consensus algorithm. Under certain topological conditions, both algorithms allow the nodes who adopt privacypreserving protocols to preserve the privacy of their initial quantized states and at the same time to obtain, after a finite number of steps, the exact average of the initial states.
We study the distributed average consensus problem in multi-agent systems with directed communication links that are subject to quantized information flow. The goal of distributed average consensus is for the nodes, each associated with some initial value, to obtain the average (or some value close to the average) of these initial values. In this paper, we present and analyze novel distributed averaging algorithms which operate exclusively on quantized values (specifically, the information stored, processed and exchanged between neighboring agents is subject to deterministic uniform quantization) and rely on event-driven updates (e.g., to reduce energy consumption, communication bandwidth, network congestion, and/or processor usage). We characterize the properties of the proposed distributed averaging protocols on quantized values and show that their execution, on any time-invariant and strongly connected digraph, will allow all agents to reach, in finite time, a common consensus value represented as the ratio of two quantized values that is equal to the exact average. We conclude with examples that illustrate the operation, performance, and potential advantages of the proposed algorithms.
This article focuses on multi-agent distributed optimization problems with a common decision variable, a global linear equality constraint, and local set constraints over directed interconnection topologies. We propose a novel ADMM based distributed algorithm to solve the above problem. During every iteration of the algorithm, each agent solves a local convex optimization problem and utilizes a finite-time ``approximate consensus protocol to update its local estimate of the optimal solution. The proposed algorithm is the first ADMM based algorithm with convergence guarantees to solve distributed multi-agent optimization problems where the interconnection topology is directed. We establish two strong explicit convergence rate estimates for the proposed algorithm to the optimal solution under two different sets of assumptions on the problem data. Further, we evaluate our proposed algorithm by solving two non-linear and non-differentiable constrained distributed optimization problems over directed graphs. Additionally, we provide a numerical comparison of the proposed algorithm with other state-of-the-art algorithms to show its efficacy over the existing methods in the literature.
We study the distributed average consensus problem in multi-agent systems with directed communication links that are subject to quantized information flow. The goal of distributed average consensus is for the nodes, each associated with some initial value, to obtain the average (or some value close to the average) of these initial values. In this paper, we present and analyze a distributed averaging algorithm which operates exclusively with quantized values (specifically, the information stored, processed and exchanged between neighboring agents is subject to deterministic uniform quantization) and rely on event-driven updates (e.g., to reduce energy consumption, communication bandwidth, network congestion, and/or processor usage). We characterize the properties of the proposed distributed averaging protocol, illustrate its operation with an example, and show that its execution, on any timeinvariant and strongly connected digraph, will allow all agents to reach, in finite time, a common consensus value that is equal to the quantized average. We conclude with comparisons against existing quantized average consensus algorithms that illustrate the performance and potential advantages of the proposed algorithm.
68 - Yi Xiong , Zhongkui Li 2021
In this paper, we consider the privacy preservation problem in both discrete- and continuous-time average consensus algorithms with strongly connected and balanced graphs, against either internal honest-but-curious agents or external eavesdroppers. A novel algorithm is proposed, which adds edge-based perturbation signals to the process of consensus computation. Our algorithm can be divided into two phases: a coordinated scrambling phase, which is for privacy preservation, and a convergence phase. In the scrambling phase, each agent is required to generate some perturbation signals and add them to the edges leading out of it. In the convergence phase, the agents update their states following a normal updating rule. It is shown that an internal honest-but-curious agent can obtain the privacy of a target agent if and only if no other agents can communicate with the target agent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا