ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient numerical approximation of a non-regular Fokker--Planck equation associated with first-passage time distributions

150   0   0.0 ( 0 )
 نشر من قبل Gregor Gantner
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In neuroscience, the distribution of a decision time is modelled by means of a one-dimensional Fokker--Planck equation with time-dependent boundaries and space-time-dependent drift. Efficient approximation of the solution to this equation is required, e.g., for model evaluation and parameter fitting. However, the prescribed boundary conditions lead to a strong singularity and thus to slow convergence of numerical approximations. In this article we demonstrate that the solution can be related to the solution of a parabolic PDE on a rectangular space-time domain with homogeneous initial and boundary conditions by transformation and subtraction of a known function. We verify that the solution of the new PDE is indeed more regular than the solution of the original PDE and proceed to discretize the new PDE using a space-time minimal residual method. We also demonstrate that the solution depends analytically on the parameters determining the boundaries as well as the drift. This justifies the use of a sparse tensor product interpolation method to approximate the PDE solution for various parameter ranges. The predicted convergence rates of the minimal residual method and that of the interpolation method are supported by numerical simulations.



قيم البحث

اقرأ أيضاً

Fractional Fokker-Planck equation plays an important role in describing anomalous dynamics. To the best of our knowledge, the existing discussions mainly focus on this kind of equation involving one diffusion operator. In this paper, we first derive the fractional Fokker-Planck equation with two-scale diffusion from the Levy process framework, and then the fully discrete scheme is built by using the $L_{1}$ scheme for time discretization and finite element method for space. With the help of the sharp regularity estimate of the solution, we optimally get the spatial and temporal error estimates. Finally, we validate the effectiveness of the provided algorithm by extensive numerical experiments.
We consider the problem of computing first-passage time distributions for reaction processes modelled by master equations. We show that this generally intractable class of problems is equivalent to a sequential Bayesian inference problem for an auxil iary observation process. The solution can be approximated efficiently by solving a closed set of coupled ordinary differential equations (for the low-order moments of the process) whose size scales with the number of species. We apply it to an epidemic model and a trimerisation process, and show good agreement with stochastic simulations.
We consider the Vlasov-Fokker-Planck equation with random electric field where the random field is parametrized by countably many infinite random variables due to uncertainty. At the theoretical level, with suitable assumption on the anisotropy of th e randomness, adopting the technique employed in elliptic PDEs [Cohen, DeVore, 2015], we prove the best N approximation in the random space breaks the dimension curse and the convergence rate is faster than the Monte Carlo method. For the numerical method, based on the adaptive sparse polynomial interpolation (ASPI) method introduced in [Chkifa, Cohen, Schwab, 2014], we develop a residual-based adaptive sparse polynomial interpolation (RASPI) method which is more efficient for multi-scale linear kinetic equation, when using numerical schemes that are time-dependent and implicit. Numerical experiments show that the numerical error of the RASPI decays faster than the Monte-Carlo method and is also dimension independent.
In this work, we are concerned with a Fokker-Planck equation related to the nonlinear noisy leaky integrate-and-fire model for biological neural networks which are structured by the synaptic weights and equipped with the Hebbian learning rule. The eq uation contains a small parameter $varepsilon$ separating the time scales of learning and reacting behavior of the neural system, and an asymptotic limit model can be derived by letting $varepsilonto 0$, where the microscopic quasi-static states and the macroscopic evolution equation are coupled through the total firing rate. To handle the endowed flux-shift structure and the multi-scale dynamics in a unified framework, we propose a numerical scheme for this equation that is mass conservative, unconditionally positivity preserving, and asymptotic preserving. We provide extensive numerical tests to verify the schemes properties and carry out a set of numerical experiments to investigate the models learning ability, and explore the solutions behavior when the neural network is excitatory.
111 - Jianbo Cui , Jialin Hong 2019
In this article, we develop and analyze a full discretization, based on the spatial spectral Galerkin method and the temporal drift implicit Euler scheme, for the stochastic Cahn--Hilliard equation driven by multiplicative space-time white noise. By introducing an appropriate decomposition of the numerical approximation, we first use the factorization method to deduce the a priori estimate and regularity estimate of the proposed full discretization. With the help of the variation approach, we then obtain the sharp spatial and temporal convergence rate in negative Sobolev space in mean square sense. Furthermore, the sharp mean square convergence rates in both time and space are derived via the Sobolev interpolation inequality and semigroup theory. To the best of our knowledge, this is the first result on the convergence rate of temporally and fully discrete numerical methods for the stochastic Cahn--Hilliard equation driven by multiplicative space-time white noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا