ﻻ يوجد ملخص باللغة العربية
The Nelson-Barr (NB) mechanism to solve the strong CP problem assumes CP conservation, arranges vanishing $bar{theta}$ at tree-level and requires vector-like quarks (VLQs) to transmit the CP breaking to the SM. We analyze the flavor constraints coming from the presence of one such down type VLQ of NB type by performing a global fit on the relevant flavor observables. A comparison is made to the case of one generic VLQ. We find that the allowed parameter space for the VLQ Yukawa couplings and the mixing to the SM are confined to a region much smaller than in the generic case, making the NB case falsifiable in principle.
We analyze the Nelson-Barr approach to the Strong CP Problem. We derive the necessary conditions in order to simultaneously reproduce the CKM phase and the quark masses. Then we quantify the irreducible contributions to the QCD topological angle, nam
We present a supersymmetric solution to the strong CP problem based on spontaneous CP violation which simultaneously addresses the affects coming from supersymmetry breaking. The generated CP violating phase is communicated to the quark sector by int
We study a model with a down-type SU(2) singlet vector-like quark (VLQ) as a minimal extension of the standard model (SM). In this model, flavor changing neutral currents (FCNCs) arise at tree level and the unitarity of the $3times 3$ Cabibbo-Kobayas
We propose a 2-Higgs doublet model (2HDM) with a global non-Abelian flavor symmetry $mathcal{Q}_6timesmathcal{Z}_2$. This discrete group accounts for the observed pattern of fermion masses and mixing angles after spontaneous symmetry breaking. In thi
The existence of new vector-like quarks is often predicted by models of new physics beyond the Standard Model, and the development of discovery strategies at colliders is the object of an intense effort from the high-energy community. Our analysis ai