ترغب بنشر مسار تعليمي؟ اضغط هنا

Cesaro summation by spheres of lattice sums and Madelung constants

163   0   0.0 ( 0 )
 نشر من قبل Sergey Zelik V.
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study convergence of 3D lattice sums via expanding spheres. It is well-known that, in contrast to summation via expanding cubes, the expanding spheres method may lead to formally divergent series (this will be so e.g. for the classical NaCl-Madelung constant). In the present paper we prove that these series remain convergent in Cesaro sense. For the case of second order Cesaro summation, we present an elementary proof of convergence and the proof for first order Cesaro summation is more involved and is based on the Riemann localization for multi-dimensional Fourier series.

قيم البحث

اقرأ أيضاً

We present a fast summation method for lattice sums of the type which arise when solving wave scattering problems with periodic boundary conditions. While there are a variety of effective algorithms in the literature for such calculations, the approa ch presented here is new and leads to a rigorous analysis of Woods anomalies. These arise when illuminating a grating at specific combinations of the angle of incidence and the frequency of the wave, for which the lattice sums diverge. They were discovered by Wood in 1902 as singularities in the spectral response. The primary tools in our approach are the Euler-Maclaurin formula and a steepest descent argument. The resulting algorithm has super-algebraic convergence and requires only milliseconds of CPU time.
The goal of this work is to formulate a systematical method for looking for the simple closed form or continued fraction representation of a class of rational series. As applications, we obtain the continued fraction representations for the alternati ng Mathieu series and some rational series. The main tools are multiple-correction and two of Ramanujans continued fraction formulae involving the quotient of the gamma functions.
331 - Karl-Mikael Perfekt 2019
We consider the class of multiple Fourier series associated with functions in the Dirichlet space of the polydisc. We prove that every such series is summable with respect to unrestricted rectangular partial sums, everywhere except for a set of zero multi-parametric logarithmic capacity. Conversely, given a compact set in the torus of zero capacity, we construct a Fourier series in the class which diverges on this set, in the sense of Pringsheim. We also prove that the multi-parametric logarithmic capacity characterizes the exceptional sets for the radial variation and radial limits of Dirichlet space functions. As a by-product of the methods of proof, the results also hold in the vector-valued setting.
In the present paper we study the minimization of energy integrals on the sphere with a focus on an interesting clustering phenomenon: for certain types of potentials, optimal measures are discrete or are supported on small sets. In particular, we pr ove that the support of any minimizer of the $p$-frame energy has empty interior whenever $p$ is not an even integer. A similar effect is also demonstrated for energies with analytic potentials which are not positive definite. In addition, we establish the existence of discrete minimizers for a large class of energies, which includes energies with polynomial potentials.
We study distance spheres: the set of points lying at constant distance from a fixed arbitrary subset $K$ of $[0,1]^d$. We show that, away from the regions where $K$ is too dense and a set of small volume, we can decompose $[0,1]^d$ into a finite num ber of sets on which the distance spheres can be straightened into subsets of parallel $(d-1)$-dimensional planes by a bi-Lipschitz map. Importantly, the number of sets and the bi-Lipschitz constants are independent of the set $K$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا