ترغب بنشر مسار تعليمي؟ اضغط هنا

T centres in photonic silicon-on-insulator material

72   0   0.0 ( 0 )
 نشر من قبل Evan MacQuarrie
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Global quantum networks will benefit from the reliable creation and control of high-performance solid-state telecom photon-spin interfaces. T radiation damage centres in silicon provide a promising photon-spin interface due to their narrow O-band optical transition near 1326 nm and long-lived electron and nuclear spin lifetimes. To date, these defect centres have only been studied as ensembles in bulk silicon. Here, we demonstrate the reliable creation of high concentration T centre ensembles in the 220 nm device layer of silicon-on-insulator (SOI) wafers by ion implantation and subsequent annealing. We then develop a method that uses spin-dependent optical transitions to benchmark the characteristic optical spectral diffusion within these T centre ensembles. Using this new technique, we show that with minimal optimization to the fabrication process high densities of implanted T centres localized $lesssim$100 nm from an interface display ~1 GHz characteristic levels of total spectral diffusion.


قيم البحث

اقرأ أيضاً

Colour centres in diamond are promising candidates as a platform for quantum technologies and biomedical imaging based on spins and/or photons. Controlling the emission properties of colour centres in diamond is a key requirement for developing effic ient single photon sources with high collection efficiency. A number of groups have produced enhancement in the emission rate over narrow wavelength ranges by coupling single emitters in nanodiamond crystals to resonant electromagnetic structures. Here we characterise in detail the spontaneous emission rates of nitrogen-vacancy centres positioned in various locations on a structured substrate. We show an average factor of 1.5 enhancement of the total emission rate when nanodiamonds are on an opal photonic crystal surface, and observe changes in the lifetime distribution. We present a model to explain these observations and associate the lifetime properties with dipole orientation and polarization effects.
A fully integrated quantum optical technology requires active quantum systems incorporated into resonant optical microstructures and inter-connected in three dimensions via photonic wires. Nitrogen vacancy-centres (NV-centres) in diamond which are ex cellent photostable room temperature single-photon emitters are ideal candidates for that purpose. Extensive research efforts to couple NV-centres to photonic structures such as optical microresonators, microcavities, and waveguides have been pursued. Strategies for integration range from top-down fabrication via etching of diamond membranes to sophisticated bottom-up assembly of hybrid structures using diamond nanocrystals where the latter approach allows for deterministic coupling. Recently, another approach based on the incorporation of nanodiamonds in soft glass optical fibres via a melting process has been introduced. Here, we utilize two-photon direct laser writing (DLW) to fabricate fully three-dimensional (3D) structures from a photoresist mixed with a solution of nanodiamonds containing NV-centres. For the first time, this approach facilitates building integrated 3D quantum photonic elements of nearly arbitrary shapes.
General purpose quantum computers can, in principle, entangle a number of noisy physical qubits to realise composite qubits protected against errors. Architectures for measurement-based quantum computing intrinsically support error-protected qubits a nd are the most viable approach for constructing an all-photonic quantum computer. Here we propose and demonstrate an integrated silicon photonic architecture that both entangles multiple photons, and encodes multiple physical qubits on individual photons, to produce error-protected qubits. We realise reconfigurable graph states to compare several schemes with and without error-correction encodings and implement a range of quantum information processing tasks. We observe a success rate increase from 62.5% to 95.8% when running a phase estimation algorithm without and with error protection, respectively. Finally, we realise hypergraph states, which are a generalised class of resource states that offer protection against correlated errors. Our results show how quantum error-correction encodings can be implemented with resource-efficient photonic architectures to improve the performance of quantum algorithms.
We experimentally demonstrate a broadband, fabrication tolerant, CMOS compatible compact silicon waveguide taper (34.2 um) in silicon-on-insulator wire waveguides. The taper works on multi-mode interference along the length of the taper. A single tap er design has a broadband operation with coupling efficiency >70% over 700 nm that can be used in O, C and L-band. The compact taper is highly tolerant to fabrication variations; >100 nm change in the taper and end waveguide width varies the taper transmission by <5%. The footprint of the device i.e. taper along with the linear gratings is ~ 442 m2; i.e. 11.5X smaller than the adiabatic taper. The taper with linear gratings provides comparable coupling efficiency as standardly used focusing gratings. We have also compared the translational and rotational alignment tolerance of the focusing grating with the linear grating.
We demonstrate advanced integrated photonic filters in silicon-on-insulator (SOI) nanowires implemented by cascaded Sagnac loop reflector (CSLR) resonators. We investigate mode splitting in these standing-wave (SW) resonators and demonstrate its use for engineering the spectral profile of on-chip photonic filters. By changing the reflectivity of the Sagnac loop reflectors (SLRs) and the phase shifts along the connecting waveguides, we tailor mode splitting in the CSLR resonators to achieve a wide range of filter shapes for diverse applications including enhanced light trapping, flat-top filtering, Q factor enhancement, and signal reshaping. We present the theoretical designs and compare the CSLR resonators with three, four, and eight SLRs fabricated in SOI. We achieve versatile filter shapes in the measured transmission spectra via diverse mode splitting that agree well with theory. This work confirms the effectiveness of using CSLR resonators as integrated multi-functional SW filters for flexible spectral engineering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا