ترغب بنشر مسار تعليمي؟ اضغط هنا

A taxonomy of black-hole binary spin precession and nutation

72   0   0.0 ( 0 )
 نشر من قبل Daria Gangardt
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Binary black holes with misaligned spins will generically induce both precession and nutation of the orbital angular momentum $bf{L}$ about the total angular momentum $bf{J}$. These phenomena modulate the phase and amplitude of the gravitational waves emitted as the binary inspirals to merger. We introduce a taxonomy of binary black-hole spin precession that encompasses all the known phenomenology, then present five new phenomenological parameters that describe generic precession and constitute potential building blocks for future gravitational waveform models. These are the precession amplitude $langletheta_Lrangle$, the precession frequency $langle Omega_Lrangle$, the nutation amplitude $Deltatheta_L$, the nutation frequency $omega$, and the precession-frequency variation $DeltaOmega_L$. We investigate the evolution of these five parameters during the inspiral and explore their statistical properties for sources with isotropic spins. In particular, we find that nutation of $bf{L}$ is most prominent for binaries with high spins ($chi gtrsim 0.5$) and moderate mass ratios ($q sim 0.6$).

قيم البحث

اقرأ أيضاً

In General Relativity, the spacetimes of black holes have three fundamental properties: (i) they are the same, to lowest order in spin, as the metrics of stellar objects; (ii) they are independent of mass, when expressed in geometric units; and (iii) they are described by the Kerr metric. In this paper, we quantify the upper bounds on potential black-hole metric deviations imposed by observations of black-hole shadows and of binary black-hole inspirals in order to explore the current experimental limits on possible violations of the last two predictions. We find that both types of experiments provide correlated constraints on deviation parameters that are primarily in the tt-components of the spacetimes, when expressed in areal coordinates. We conclude that, currently, there is no evidence for a deviations from the Kerr metric across the 8 orders of magnitudes in masses and 16 orders in curvatures spanned by the two types of black holes. Moreover, because of the particular masses of black holes in the current sample of gravitational-wave sources, the correlations imposed by the two experiments are aligned and of similar magnitudes when expressed in terms of the far field, post-Newtonian predictions of the metrics. If a future coalescing black-hole binary with two low-mass (e.g., ~3 Msun) components is discovered, the degeneracy between the deviation parameters can be broken by combining the inspiral constraints with those from the black-hole shadow measurements.
We propose a novel method to test the binary black hole (BBH) nature of compact binaries detectable by gravitational wave (GW) interferometers and hence constrain the parameter space of other exotic compact objects. The spirit of the test lies in the no-hair conjecture for black holes where all properties of a black hole are characterised by the mass and the spin of the black hole. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence uniquely encodes the nature of the compact binary. Thus we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.
Within the framework of 2PN black-hole binary spin precession, we explore configurations where one of the two spins oscillates from being completely aligned with the orbital angular momentum to being completely anti-aligned with it during a single pr ecession cycle. This wide nutation is the extreme limit of the generic phenomenon of spin nutation in black-hole binaries. Crucially, wide nutation happens on the short precession time scale and it is not a secular effect due to gravitational-wave radiation reaction. The spins of these binaries, therefore, flip repeatedly as one of these special configurations is entered. Binaries with total mass $M$, mass ratio $q$, and dimensionless spin $chi_1$ ($chi_2$) of the more (less) massive black hole are allowed to undergo wide nutation at binary separations $r leq r_{rm wide} equiv [(q chi_2 - chi_1)/(1-q)]^2 M$. Sources that are more likely to nutate widely have similar masses and effective spins close to zero.
In a recent letter [N. V. Krishnendu et al., PRL 119, 091101 (2017)] we explored the possibility of probing the binary black hole nature of coalescing compact binaries, by measuring their spin-induced multipole moments, observed in advanced LIGO dete ctors. Coefficients characterizing the spin-induced multipole moments of Kerr black holes are predicted by the no-hair conjecture and appear in the gravitational waveforms through quadratic and higher order spin interactions and hence can be directly measured from gravitational wave observations. We assess the capabilities of the third-generation gravitational wave interferometers such as Cosmic Explorer and Einstein Telescope in carrying out such measurements and use them to test the binary black hole nature of observed binaries. In this paper, we extend the investigations of our previous work, by proposing to measure (a) spin-induced quadrupole effects, (b) simultaneous measurements of spin-induced quadrupole and octupole effects, in the context of the third-generation detectors. We find that, using third-generation detectors the symmetric combination of coefficients associated with spin-induced quadrupole moment of each binary component may be constrained to a value $leq 1.1$ while a similar combination of coefficients for spin-induced octupole moment may be constrained to $leq 2$, where both combinations take the value of 1 for a binary black hole system. Further, we consider two different binary black hole populations, as proxies of the population that will be observed by the third generation detectors, and obtain the resulting distribution of the spin-induced quadrupole coefficient. These estimates suggest that third-generation detectors can accurately constrain the first four multipole moments of the compact objects (mass, spin, quadrupole, and octupole) facilitating a thorough probe of their black hole nature.
An exact and analytical solution of four dimensional vacuum General Relativity representing a system of two static black holes at equilibrium is presented. The metric is completely regular outside the event horizons, both from curvature and conical s ingularities. The balance between the two Schwarzschild sources is granted by an external gravitational field, without the need of extra matter fields besides gravity, nor strings or struts. The geometry of the solution is analysed. The Smarr law, the first and the second law of black hole thermodynamics are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا