ﻻ يوجد ملخص باللغة العربية
For a simple, simply connected, complex group G, we prove the existence of a flat projective connection on the bundle of nonabelian theta functions on the moduli space of semistable parabolic G-bundles over families of smooth projective curves with marked points.
Geometric structures on manifolds became popular when Thurston used them in his work on the geometrization conjecture. They were studied by many people and they play an important role in higher Teichmuller theory. Geometric structures on a manifold a
We prove a Torelli theorem for the moduli space of semistable parabolic Higgs bundles over a smooth complex projective algebraic curve under the assumption that the parabolic weight system is generic. When the genus is at least two, using this result
We give an algebro-geometric construction of the Hitchin connection, valid also in positive characteristic (with a few exceptions). A key ingredient is a substitute for the Narasimhan-Atiyah-Bott Kahler form that realizes the Chern class of the deter
We investigate orthogonal and symplectic bundles with parabolic structure, over a curve.
In this paper we count the number of isomorphism classes of geometrically indecomposable quasi-parabolic structures of a given type on a given vector bundle on the projective line over a finite field. We give a conjectural cohomological interpretatio