ترغب بنشر مسار تعليمي؟ اضغط هنا

Optomechanical cooling with coherent and squeezed light: the thermodynamic cost of opening the heat valve

135   0   0.0 ( 0 )
 نشر من قبل Juliette Monsel
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ground-state cooling of mechanical motion by coupling to a driven optical cavity has been demonstrated in various optomechanical systems. In our work, we provide a so far missing thermodynamic performance analysis of optomechanical sideband cooling in terms of a heat valve. As performance quantifiers, we examine not only the lowest reachable effective temperature (phonon number) but also the evacuated-heat flow as an equivalent to the cooling power of a standard refrigerator, as well as appropriate thermodynamic efficiencies, which all can be experimentally inferred from measurements of the cavity output light field. Importantly, in addition to the standard optomechanical setup fed by coherent light, we investigate two recent alternative setups for achieving ground-state cooling: replacing the coherent laser drive by squeezed light or using a cavity with a frequency-dependent (Fano) mirror. We study the dynamics of these setups within and beyond the weak-coupling limit and give concrete examples based on parameters of existing experimental systems. By applying our thermodynamic framework, we gain detailed insights into these three different optomechanical cooling setups, allowing a comprehensive understanding of the thermodynamic mechanisms at play.

قيم البحث

اقرأ أيضاً

Quantum fluctuations of the electromagnetic vacuum impose an observable quantum limit to the lowest temperatures that can be reached with conventional laser cooling techniques. As laser cooling experiments continue to bring massive mechanical systems to unprecedented temperatures, this quantum limit takes on increasingly greater practical importance in the laboratory. Fortunately, vacuum fluctuations are not immutable, and can be squeezed through the generation of entangled photon pairs. Here we propose and experimentally demonstrate that squeezed light can be used to sideband cool the motion of a macroscopic mechanical object below the quantum limit. To do so, we first cool a microwave cavity optomechanical system with a coherent state of light to within 15% of this limit. We then cool by more than 2 dB below the quantum limit using a squeezed microwave field generated by a Josephson Parametric Amplifier (JPA). From heterodyne spectroscopy of the mechanical sidebands, we measure a minimum thermal occupancy of 0.19 phonons. With this novel technique, even low frequency mechanical oscillators can in principle be cooled arbitrarily close to the motional ground state, enabling the exploration of quantum physics in larger, more massive systems.
134 - A.M. Zagoskin , E. Ilichev , 2012
In parametric systems, squeezed states of radiation can be generated via extra work done by external sources. This eventually increases the entropy of the system despite the fact that squeezing is reversible. We investigate the entropy increase due t o squeezing and show that it is quadratic in the squeezing rate and may become important in the repeated operation of tunable oscillators (quantum buses) used to connect qubits in various proposed schemes for quantum computing.
140 - G.M. Saxena , A. Agarwal 2008
The laser cooling of atoms is a result of the combined effect of doppler shift, light shift and polarization gradient. These are basically undesirable phenomena. However, they combine gainfully in realizing laser cooling and trapping of the atoms. In this paper we discuss the laser cooling of atoms in the presence of the squeezed light with the decay of atomic dipole moment into noisy quadrature. We show that the higher decay rate of the atomic dipole moment into the noisy quadrature, which is also an undesirable effect, may contribute in realizing larger cooling force vis-a-vis normal laser light.
Entangled coherent states are shown to emerge, with high fidelity, when mixing coherent and squeezed vacuum states of light on a beam-splitter. These maximally entangled states, where photons bunch at the exit of a beamsplitter, are measured experime ntally by Fock-state projections. Entanglement is examined theoretically using a Bell-type nonlocality test and compared with ideal entangled coherent states. We experimentally show nearly perfect similarity with entangled coherent states for an optimal ratio of coherent and squeezed vacuum light. In our scheme, entangled coherent states are generated deterministically with small amplitudes, which could be beneficial, for example, in deterministic distribution of entanglement over long distances.
The dissipative properties of an optical cavity can be effectively controlled by placing it in a feedback loop where the light at the cavity output is detected and the corresponding signal is used to modulate the amplitude of a laser field which driv es the cavity itself. Here we show that this effect can be exploited to improve the performance of an optomechanical heat engine which makes use of polariton excitations as working fluid. In particular we demonstrate that, by employing a positive feedback close to the instability threshold, it is possible to operate this engine also under parameters regimes which are not usable without feedback, and which may significantly ease the practical implementation of this device.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا