ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase separation of active Brownian particles in two dimensions: Anything for a quiet life

102   0   0.0 ( 0 )
 نشر من قبل Matthias Schmidt
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Active Brownian particles display self-propelled movement, which can be modelled as arising from a one-body force. Although their interparticle interactions are purely repulsive, for strong self propulsion the swimmers phase separate into dilute and dense phases. We describe in detail a recent theory (Phys. Rev. E 100, 052604 (2019); Phys. Rev. Lett. 128, 26802 (2019)) for such motility induced phase-separation. Starting from the continuity equation and the force density balance, the description is based on four superadiabatic contributions to the internal force density. Here the superadiabatic forces are due to the flow in the system and they act on top of the adiabatic forces that arise from the equilibrium free energy. Phase coexistence is described by bulk state functions and agrees quantitatively with Brownian dynamics simulation results from the literature. We describe in detail all analytical steps to fully resolve the spatial and orientational dependence of the one-body density and current. The decomposition into angular Fourier series leads to coupling of total density, polarization and all higher modes. We describe the power functional approach, including the kinematic dependence of the superadiabatic force fields and the quiet life effect that pushes particles from fast to slow regions, and hence induces the phase separation.



قيم البحث

اقرأ أيضاً

207 - Zhan Ma , Ran Ni 2021
Using computer simulations and dynamic mean-field theory, we demonstrate that fast enough rotation of circle active Brownian particles in two dimensions generates a dynamical clustering state interrupting the conventional motility induced phase separ ation (MIPS). Multiple clusters arise from the combination of the conventional MIPS cohesion, and the circulating current caused disintegration. The non-vanishing current in non-equilibrium steady states microscopically originates from the motility ``relieved by automatic rotation, which breaks the detailed balance at the continuum level. This mechanism sheds light on the understanding of dynamic clusters formation observed in a variety of active matter systems, and may help examine the generalization of effective thermodynamic concepts developed in the context of MIPS.
Phase separation in a low-density gas-like phase and a high-density liquid-like one is a common trait of biological and synthetic self-propelling particles systems. The competition between motility and stochastic forces is assumed to fix the boundary between the homogeneous and the phase-separated phase. Here we demonstrate that motility does also promote the homogeneous phase allowing particles to resolve their collisions. This new understanding allows quantitatively predicting the spinodal-line of hard self-propelling Brownian particles, the prototypical model exhibiting a motility induced phase separation. Furthermore, we demonstrate that frictional forces control the physical process by which motility promotes the homogeneous phase. Hence, friction emerges as an experimentally variable parameter to control the motility induced phase diagram.
Frictional forces affect the rheology of hard-sphere colloids, at high shear rate. Here we demonstrate, via numerical simulations, that they also affect the dynamics of active Brownian particles, and their motility induced phase separation. Frictiona l forces increase the angular diffusivity of the particles, in the dilute phase, and prevent colliding particles from resolving their collision by sliding one past to the other. This leads to qualitatively changes of motility-induced phase diagram in the volume-fraction motility plane. While frictionless systems become unstable towards phase separation as the motility increases only if their volume fraction overcomes a threshold, frictional system become unstable regardless of their volume fraction. These results suggest the possibility of controlling the motility induced phase diagram by tuning the roughness of the particles.
Recent experimental studies have demonstrated that cellular motion can be directed by topographical gradients, such as those resulting from spatial variations in the features of a micropatterned substrate. This phenomenon, known as topotaxis, is espe cially prominent among cells persistently crawling within a spatially varying distribution of cell-sized obstacles. In this article we introduce a toy model of topotaxis based on active Brownian particles constrained to move in a lattice of obstacles, with space-dependent lattice spacing. Using numerical simulations and analytical arguments, we demonstrate that topographical gradients introduce a spatial modulation of the particles persistence, leading to directed motion toward regions of higher persistence. Our results demonstrate that persistent motion alone is sufficient to drive topotaxis and could serve as a starting point for more detailed studies on self-propelled particles and cells.
We present a numerical study of the phase behavior of repulsively interacting active polar particles that align their active velocities nematically. The amplitude of the active velocity, and the noise in its orientational alignment control the active nature of the system. At high values of orientational noise, the structural fluid undergoes a continuous nematic-isotropic transition in active orientation. This transition is well separated from an active phase separation, characterized by the formation of high density hexatic clusters, observed at lower noise strengths. With increasing activity, the system undergoes a re-entrant fluid-phase separation-fluid transition. The phase coexistence at low activity can be understood in terms of motility induced phase separation. In contrast, the re-melting of hexatic clusters, and the collective motion at low orientational noise are dominated by flocking behavior. At high activity, sliding and jamming of polar sub-clusters, formation of grain boundaries, lane formation, and subsequent fragmentation of the polar patches mediate remelting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا