ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced Aspect-Based Sentiment Analysis Models with Progressive Self-supervised Attention Learning

78   0   0.0 ( 0 )
 نشر من قبل Jialong Tang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In aspect-based sentiment analysis (ABSA), many neural models are equipped with an attention mechanism to quantify the contribution of each context word to sentiment prediction. However, such a mechanism suffers from one drawback: only a few frequent words with sentiment polarities are tended to be taken into consideration for final sentiment decision while abundant infrequent sentiment words are ignored by models. To deal with this issue, we propose a progressive self-supervised attention learning approach for attentional ABSA models. In this approach, we iteratively perform sentiment prediction on all training instances, and continually learn useful attention supervision information in the meantime. During training, at each iteration, context words with the highest impact on sentiment prediction, identified based on their attention weights or gradients, are extracted as words with active/misleading influence on the correct/incorrect prediction for each instance. Words extracted in this way are masked for subsequent iterations. To exploit these extracted words for refining ABSA models, we augment the conventional training objective with a regularization term that encourages ABSA models to not only take full advantage of the extracted active context words but also decrease the weights of those misleading words. We integrate the proposed approach into three state-of-the-art neural ABSA models. Experiment results and in-depth analyses show that our approach yields better attention results and significantly enhances the performance of all three models. We release the source code and trained models at https://github.com/DeepLearnXMU/PSSAttention.



قيم البحث

اقرأ أيضاً

In aspect-level sentiment classification (ASC), it is prevalent to equip dominant neural models with attention mechanisms, for the sake of acquiring the importance of each context word on the given aspect. However, such a mechanism tends to excessive ly focus on a few frequent words with sentiment polarities, while ignoring infrequent ones. In this paper, we propose a progressive self-supervised attention learning approach for neural ASC models, which automatically mines useful attention supervision information from a training corpus to refine attention mechanisms. Specifically, we iteratively conduct sentiment predictions on all training instances. Particularly, at each iteration, the context word with the maximum attention weight is extracted as the one with active/misleading influence on the correct/incorrect prediction of every instance, and then the word itself is masked for subsequent iterations. Finally, we augment the conventional training objective with a regularization term, which enables ASC models to continue equally focusing on the extracted active context words while decreasing weights of those misleading ones. Experimental results on multiple datasets show that our proposed approach yields better attention mechanisms, leading to substantial improvements over the two state-of-the-art neural ASC models. Source code and trained models are available at https://github.com/DeepLearnXMU/PSSAttention.
Aspect-based sentiment analysis (ABSA) aims to predict fine-grained sentiments of comments with respect to given aspect terms or categories. In previous ABSA methods, the importance of aspect has been realized and verified. Most existing LSTM-based m odels take aspect into account via the attention mechanism, where the attention weights are calculated after the context is modeled in the form of contextual vectors. However, aspect-related information may be already discarded and aspect-irrelevant information may be retained in classic LSTM cells in the context modeling process, which can be improved to generate more effective context representations. This paper proposes a novel variant of LSTM, termed as aspect-aware LSTM (AA-LSTM), which incorporates aspect information into LSTM cells in the context modeling stage before the attention mechanism. Therefore, our AA-LSTM can dynamically produce aspect-aware contextual representations. We experiment with several representative LSTM-based models by replacing the classic LSTM cells with the AA-LSTM cells. Experimental results on SemEval-2014 Datasets demonstrate the effectiveness of AA-LSTM.
Aspect-based sentiment analysis aims to determine the sentiment polarity towards a specific aspect in online reviews. Most recent efforts adopt attention-based neural network models to implicitly connect aspects with opinion words. However, due to th e complexity of language and the existence of multiple aspects in a single sentence, these models often confuse the connections. In this paper, we address this problem by means of effective encoding of syntax information. Firstly, we define a unified aspect-oriented dependency tree structure rooted at a target aspect by reshaping and pruning an ordinary dependency parse tree. Then, we propose a relational graph attention network (R-GAT) to encode the new tree structure for sentiment prediction. Extensive experiments are conducted on the SemEval 2014 and Twitter datasets, and the experimental results confirm that the connections between aspects and opinion words can be better established with our approach, and the performance of the graph attention network (GAT) is significantly improved as a consequence.
130 - Lu Xu , Lidong Bing , Wei Lu 2020
Aspect based sentiment analysis, predicting sentiment polarity of given aspects, has drawn extensive attention. Previous attention-based models emphasize using aspect semantics to help extract opinion features for classification. However, these works are either not able to capture opinion spans as a whole, or not able to capture variable-length opinion spans. In this paper, we present a neat and effective structured attention model by aggregating multiple linear-chain CRFs. Such a design allows the model to extract aspect-specific opinion spans and then evaluate sentiment polarity by exploiting the extracted opinion features. The experimental results on four datasets demonstrate the effectiveness of the proposed model, and our analysis demonstrates that our model can capture aspect-specific opinion spans.
Recent neural-based aspect-based sentiment analysis approaches, though achieving promising improvement on benchmark datasets, have reported suffering from poor robustness when encountering confounder such as non-target aspects. In this paper, we take a causal view to addressing this issue. We propose a simple yet effective method, namely, Sentiment Adjustment (SENTA), by applying a backdoor adjustment to disentangle those confounding factors. Experimental results on the Aspect Robustness Test Set (ARTS) dataset demonstrate that our approach improves the performance while maintaining accuracy in the original test set.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا