ترغب بنشر مسار تعليمي؟ اضغط هنا

Atom-in-jellium equations of state and melt curves in the white dwarf regime

131   0   0.0 ( 0 )
 نشر من قبل Damian Swift
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atom-in-jellium calculations of the electron states, and perturbative calculations of the Einstein frequency, were used to construct equations of state (EOS) from around $10^{-5}$ to $10^7$g/cm$^3$ and $10^{-4}$ to $10^{6}$eV for elements relevant to white dwarf (WD) stars. This is the widest range reported for self-consistent electronic shell structure calculations. Elements of the same ratio of atomic weight to atomic number were predicted to asymptote to the same $T=0$ isotherm, suggesting that, contrary to recent studies of the crystallization of WDs, the amount of gravitational energy that could be released by separation of oxygen and carbon is small. A generalized Lindemann criterion based on the amplitude of the ion-thermal oscillations calculated using atom-in-jellium theory, previously used to extrapolate melt curves for metals, was found to reproduce previous thermodynamic studies of the melt curve of the one component plasma with a choice of vibration amplitude consistent with low pressure results. For elements for which low pressure melting satisfies the same amplitude criterion, such as Al, this melt model thus gives a likely estimate of the melt curve over the full range of normal electronic matter; for the other elements, it provides a useful constraint on the melt locus.

قيم البحث

اقرأ أيضاً

Recent path-integral Monte Carlo and quantum molecular dynamics simulations have shown that computationally efficient average-atom models can predict thermodynamic states in warm dense matter to within a few percent. One such atom-in-jellium model ha s typically been used to predict the electron-thermal behavior only, although it was previously developed to predict the entire equation of state (EOS). We report completely atom-in-jellium EOS calculations for Be, Al, Si, Fe, and Mo, as elements representative of a range of atomic number and low-pressure electronic structure. Comparing the more recent method of pseudo-atom molecular dynamics, atom-in-jellium results were similar: sometimes less accurate, sometimes more. All these techniques exhibited pronounced effects of electronic shell structure in the shock Hugoniot which are not captured by Thomas-Fermi based EOS. These results demonstrate the value of a hierarchical approach to EOS construction, using average-atom techniques with shell structure to populate a wide-range EOS surface efficiently, complemented by more rigorous 3D multi-atom calculations to validate and adjust the EOS.
Equations of state (EOS) calculated from a computationally efficient atom-in-jellium treatment of the electronic structure have recently been shown to be consistent with more rigorous path integral Monte Carlo (PIMC) and quantum molecular dynamics (Q MD) simulations of metals in the warm dense matter regime. Here we apply the atom-in-jellium model to predict wide-ranging EOS for the cryogenic liquid elements nitrogen, oxygen, and fluorine. The principal Hugoniots for these substances were surprisingly consistent with available shock data and Thomas-Fermi (TF) EOS for very high pressures, and exhibited systematic variations from TF associated with shell ionization effects, in good agreement with PIMC, though deviating from QMD and experiment in the molecular regime. The new EOS are accurate much higher in pressure than previous widely-used models for nitrogen and oxygen in particular, and should allow much more accurate predictions for oxides and nitrides in the liquid, vapor, and plasma regime, where these have previously been constructed as mixtures containing the older EOS.
Although usually considered as a technique for predicting electron states in dense plasmas, atom-in-jellium calculations can be used to predict the mean displacement of the ion from its equilibrium position in colder matter, as a function of compress ion and temperature. The Lindemann criterion of a critical displacement for melting can then be employed to predict the melt locus, normalizing for instance to the observed melt temperature or to more direct simulations such as molecular dynamics (MD). This approach reproduces the high pressure melting behavior of Al as calculated using the Lindemann model and thermal vibrations in the solid. Applied to Fe, we find that it reproduces the limited-range melt locus of a multiphase equation of state (EOS) and the results of ab initio MD simulations, and agrees less well with a Lindemann construction using an older EOS. The resulting melt locus lies significantly above the older melt locus for pressures above 1.5,TPa, but is closer to recent ab initio MD results and extrapolations of an analytic fit to them. This study confirms the importance of core freezing in massive exoplanets, predicting that a slightly smaller range of exoplanets than previously assessed would be likely to exhibit dynamo generation of magnetic fields by convection in the liquid portion of the core.
109 - Piotr M. Kowalski 2016
Dense, He-rich atmospheres of cool white dwarfs represent a challenge to the modeling. This is because these atmospheres are constituted of a dense fluid in which strong multi-atomic interactions determine their physics and chemistry. Therefore, the ideal-gas-based description of absorption is no longer adequate, which makes the opacities of these atmospheres difficult to model. This is illustrated with severe problems in fitting the spectra of cool, He-rich stars. Good description of the infrared (IR) opacity is essential for proper assignment of the atmospheric parameters of these stars. Using methods of computational quantum chemistry we simulate the IR absorption of dense He/H media. We found a significant IR absorption from He atoms (He-He-He CIA opacity) and a strong pressure distortion of the H$_2$-He collision-induced absorption (CIA). We discuss the implication of these results for interpretation of the spectra of cool stars.
A suite of discoveries in the last two decades demonstrate that we are now at a point where incorporating magnetic behavior is key for advancing our ability to characterize substellar and planetary systems. The next decade heralds the exciting matura tion of the now-burgeoning field of brown dwarf magnetism, and investing now in brown dwarf magnetism will provide a key platform for exploring exoplanetary magnetism and habitability beyond the solar system. We anticipate significant discoveries including: the nature of substellar and planetary magnetic dynamos, the characterization of exo-aurora physics and brown dwarf magnetospheric environments, and the role of satellites in manifestations of substellar magnetic activity. These efforts will require significant new observational capabilities at radio and near infrared wavelengths, dedicated long-term monitoring programs, and committed support for the theoretical modeling efforts underpinning the physical processes of the magnetic phenomena
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا