ترغب بنشر مسار تعليمي؟ اضغط هنا

Semi-supervised Left Atrium Segmentation with Mutual Consistency Training

129   0   0.0 ( 0 )
 نشر من قبل Yicheng Wu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Semi-supervised learning has attracted great attention in the field of machine learning, especially for medical image segmentation tasks, since it alleviates the heavy burden of collecting abundant densely annotated data for training. However, most of existing methods underestimate the importance of challenging regions (e.g. small branches or blurred edges) during training. We believe that these unlabeled regions may contain more crucial information to minimize the uncertainty prediction for the model and should be emphasized in the training process. Therefore, in this paper, we propose a novel Mutual Consistency Network (MC-Net) for semi-supervised left atrium segmentation from 3D MR images. Particularly, our MC-Net consists of one encoder and two slightly different decoders, and the prediction discrepancies of two decoders are transformed as an unsupervised loss by our designed cycled pseudo label scheme to encourage mutual consistency. Such mutual consistency encourages the two decoders to have consistent and low-entropy predictions and enables the model to gradually capture generalized features from these unlabeled challenging regions. We evaluate our MC-Net on the public Left Atrium (LA) database and it obtains impressive performance gains by exploiting the unlabeled data effectively. Our MC-Net outperforms six recent semi-supervised methods for left atrium segmentation, and sets the new state-of-the-art performance on the LA database.

قيم البحث

اقرأ أيضاً

Deep learning has achieved promising segmentation performance on 3D left atrium MR images. However, annotations for segmentation tasks are expensive, costly and difficult to obtain. In this paper, we introduce a novel hierarchical consistency regular ized mean teacher framework for 3D left atrium segmentation. In each iteration, the student model is optimized by multi-scale deep supervision and hierarchical consistency regularization, concurrently. Extensive experiments have shown that our method achieves competitive performance as compared with full annotation, outperforming other state-of-the-art semi-supervised segmentation methods.
Training deep convolutional neural networks usually requires a large amount of labeled data. However, it is expensive and time-consuming to annotate data for medical image segmentation tasks. In this paper, we present a novel uncertainty-aware semi-s upervised framework for left atrium segmentation from 3D MR images. Our framework can effectively leverage the unlabeled data by encouraging consistent predictions of the same input under different perturbations. Concretely, the framework consists of a student model and a teacher model, and the student model learns from the teacher model by minimizing a segmentation loss and a consistency loss with respect to the targets of the teacher model. We design a novel uncertainty-aware scheme to enable the student model to gradually learn from the meaningful and reliable targets by exploiting the uncertainty information. Experiments show that our method achieves high performance gains by incorporating the unlabeled data. Our method outperforms the state-of-the-art semi-supervised methods, demonstrating the potential of our framework for the challenging semi-supervised problems.
Recently proposed techniques for semi-supervised learning such as Temporal Ensembling and Mean Teacher have achieved state-of-the-art results in many important classification benchmarks. In this work, we expand the Mean Teacher approach to segmentati on tasks and show that it can bring important improvements in a realistic small data regime using a publicly available multi-center dataset from the Magnetic Resonance Imaging (MRI) domain. We also devise a method to solve the problems that arise when using traditional data augmentation strategies for segmentation tasks on our new training scheme.
96 - Xin Lai , Zhuotao Tian , Li Jiang 2021
Semantic segmentation has made tremendous progress in recent years. However, satisfying performance highly depends on a large number of pixel-level annotations. Therefore, in this paper, we focus on the semi-supervised segmentation problem where only a small set of labeled data is provided with a much larger collection of totally unlabeled images. Nevertheless, due to the limited annotations, models may overly rely on the contexts available in the training data, which causes poor generalization to the scenes unseen before. A preferred high-level representation should capture the contextual information while not losing self-awareness. Therefore, we propose to maintain the context-aware consistency between features of the same identity but with different contexts, making the representations robust to the varying environments. Moreover, we present the Directional Contrastive Loss (DC Loss) to accomplish the consistency in a pixel-to-pixel manner, only requiring the feature with lower quality to be aligned towards its counterpart. In addition, to avoid the false-negative samples and filter the uncertain positive samples, we put forward two sampling strategies. Extensive experiments show that our simple yet effective method surpasses current state-of-the-art methods by a large margin and also generalizes well with extra image-level annotations.
Recent semi-supervised learning methods use pseudo supervision as core idea, especially self-training methods that generate pseudo labels. However, pseudo labels are unreliable. Self-training methods usually rely on single model prediction confidence to filter low-confidence pseudo labels, thus remaining high-confidence errors and wasting many low-confidence correct labels. In this paper, we point out it is difficult for a model to counter its own errors. Instead, leveraging inter-model disagreement between different models is a key to locate pseudo label errors. With this new viewpoint, we propose mutual training between two different models by a dynamically re-weighted loss function, called Dynamic Mutual Training (DMT). We quantify inter-model disagreement by comparing predictions from two different models to dynamically re-weight loss in training, where a larger disagreement indicates a possible error and corresponds to a lower loss value. Extensive experiments show that DMT achieves state-of-the-art performance in both image classification and semantic segmentation. Our codes are released at https://github.com/voldemortX/DST-CBC .
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا