ترغب بنشر مسار تعليمي؟ اضغط هنا

The Detectability of Kiloparsec Scale Dual AGNs: The Impact of Galactic Structure and Black Hole Orbital Properties

102   0   0.0 ( 0 )
 نشر من قبل Kunyang Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observational searches for dual active galactic nuclei (dAGNs) at kiloparsec separations are crucial for understanding the role of galaxy mergers in the evolution of galaxies. In addition, kpc-scale dAGNs may serve as the parent population of merging massive black hole (MBH) binaries, an important source of gravitational waves. We use a semi-analytical model to describe the orbital evolution of unequal mass MBH pairs under the influence of stellar and gaseous dynamical friction in post-merger galaxies. We quantify how the detectability of approximately 40,000 kpc-scale dAGNs depends on the structure of their host galaxies and the orbital properties of the MBH pair. Our models indicate that kpc-scale dAGNs are most likely to be detected in gas-rich post-merger galaxies with smaller stellar bulges and relatively massive, rapidly rotating gas disks. The detectability is also increased in systems with MBHs of comparable masses following low eccentricity prograde orbits. In contrast, dAGNs with retrograde, low eccentricity orbits are some of the least detectable systems among our models. The dAGNs in models in which the accreting MBHs are allowed to exhibit radiative feedback are characterized by a significantly lower overall detectability. The suppression in detectability is most pronounced in gas-rich merger remnant galaxies, where radiation feedback is more likely to arise. If so, then large, relatively gas poor galaxies may be the best candidates for detecting dAGNs.

قيم البحث

اقرأ أيضاً

The prevalence and properties of kiloparsec-scale outflows in nearby Type 1 quasars have been the subject of little previous attention. This work presents Gemini integral field spectroscopy of ten Type 1 radio-quiet quasars at $z<0.3$. The excellent image quality, coupled with a new technique to remove the point spread function using spectral information, allow the fitting of the underlying host on a spaxel-by-spaxel basis. Fits to stars, line-emitting gas, and interstellar absorption show that 100% of the sample host warm ionized and/or cool neutral outflows with spatially-averaged velocities ($langle v_{98%}rangle equiv langle v+2sigmarangle$) of 200-1300 km/s and peak velocities (maximum $v_{98%}$) of 500-2600 km/s. These minor-axis outflows are powered primarily by the central AGN, reach scales of 3-12 kpc, and often fill the field of view. Including molecular data and Type 2 quasar measurements, nearby quasars show a wide range in mass outflow rates ($dM/dt = 1$ to $>$1000 M$_odot$/yr) and momentum boosts [($c$ $dp/dt$)/L$_mathrm{AGN}$ = 0.01-20]. After extending the mass scale to Seyferts, $dM/dt$ and $dE/dt$ correlate with black hole mass ($dM/dt sim M_mathrm{BH}^{0.7pm0.3}$ and $dE/dt sim M_mathrm{BH}^{1.3pm0.5}$). Thus, the most massive black holes in the local universe power the most massive and energetic quasar-mode winds.
We present results of the clustering analysis between active galactic nuclei (AGNs) and galaxies at redshift 0.1-1.0 for investigating properties of galaxies associated with the AGNs, revealing the nature of fueling mechanism of supermassive black ho les (SMBHs). We used 8059 SDSS AGNs/QSOs for which virial masses of individual SMBHs were measured, and divided them into four mass groups. Cross-correlation analysis was performed and bias for each mass group was derived. The averaged color and luminosity distributions of galaxies around the AGNs/QSOs were also derived for each mass group. The galaxy color was estimated for SED constructed from a merged SDSS and UKIDSS catalog. The distributions of color and luminosity were derived by the subtraction method, which does not require redshift information of galaxies. The main results of this work are: (1) a bias increases by a factor two from the lower mass group to the highest mass group; (2) the environment around AGNs with the most massive SMBH (Mbh > 10^9 Msun) is dominated by red sequence galaxies; (3) marginal indication of decline in luminosity function at dimmer side of M > -19.5 mag is found for galaxies around AGNs with Mbh = 10^8.2 - 10^9 Msun and nearest redshift group (z=0.1-0.3). These results indicate that AGNs with the most massive SMBHs reside in haloes where large fraction of galaxies have been transited to the red sequence. The accretion of hot halo gas as well as recycled gas from evolving stars can be the most plausible mechanism to fuel the SMBHs above ~10^9 Msun.
In this contribution, we summarize our results concerning the observational constraints on the electric charge associated with the Galactic centre black hole - Sgr A*. According to the no-hair theorem, every astrophysical black hole, including superm assive black holes, is characterized by at most three classical, externally observable parameters - mass, spin, and the electric charge. While the mass and the spin have routinely been measured by several methods, the electric charge has usually been neglected, based on the arguments of efficient discharge in astrophysical plasmas. From a theoretical point of view, the black hole can attain charge due to the mass imbalance between protons and electrons in fully ionized plasmas, which yields about $sim 10^8,{rm C}$ for Sgr A*. The second, induction mechanism concerns rotating Kerr black holes embedded in an external magnetic field, which leads to electric field generation due to the twisting of magnetic field lines. This electric field can be associated with the induced Wald charge, for which we calculate the upper limit of $sim 10^{15},{rm C}$ for Sgr A*. Although the maximum theoretical limit of $sim 10^{15},{rm C}$ is still 12 orders of magnitude smaller than the extremal charge of Sgr A*, we analyse a few astrophysical consequences of having a black hole with a small charge in the Galactic centre. Two most prominent ones are the effect on the X-ray bremsstrahlung profile and the effect on the position of the innermost stable circular orbit.
The most accepted scenario for the evolution of massive galaxies across cosmic time predicts a regulation based on the interplay between AGN feedback, which injects large amounts of energy in the host environment, and galaxy mergers, being able to tr igger massive star formation events and accretion onto the supermassive black holes. Interacting systems hosting AGN are useful laboratories to get key insights into both phenomena. In this context, we present the analysis of the optical spectral properties of IRAS 20210+1121 (I20210), a merging system at $z = 0.056$. According to X-ray data, this object comprises two interacting galaxies, each hosting an obscured AGN. The optical spectra confirm the presence of AGN features in both galaxies. In particular, we are able to provide a Seyfert classification for I20210 North. The spectrum of I20120 South shows broad blueshifted components associated with the most intense emission lines that indicate the presence of an ionized outflow, for which we derive a maximum velocity of $sim$2000 km s$^{-1}$, an extension of $sim$2 kpc and a mass rate of $sim$0.6 M$_odot$ yr$^{-1}$. We also report the existence of an ionized nebular component with $v sim 1000$ km s$^{-1}$ at $sim$6.5 kpc Southwards of I20210 South, that can be interpreted as disrupted gas ejected from the host galaxy by the action of the outflow. I20120 therefore exhibits a double obscured AGN, with one of them showing evidence of ongoing events for AGN-powered outflows. Future spatially-resolved spectroscopy will allow to accurately map on the gas kinematics in this AGN pair and evaluate the impact of the outflow on both the interstellar medium and galaxy environment.
There remain significant uncertainties in the origin and evolution of black holes in binary systems, in particular regarding their birth sites and the influence of natal kicks. These are long-standing issues, but their debate has been reinvigorated i n the era of gravitational wave detections and the improving precision of astrometric measurements. Using recent and archival characterisation of Galactic black hole X-ray binaries (BHXBs), we report here an apparent anticorrelation between P{orb} (system orbital periods) and scatter in z (elevation above the Galactic plane). The absence of long period sources at high z is not an obvious observational bias, and two possible explanatory scenarios are qualitatively explored: (1) a disc origin for BHXBs followed by natal kicks producing the scatter in z, with only the tightest binaries preferentially surviving strong kicks; (2) a halo origin, with P{orb} shortening through dynamical interactions in globular clusters (GCs). For the latter case, we show a correspondence in z-scatter between BHXBs and the GCs with most compact core radii of <0.1pc. However, the known absence of outbursting BHXB transients within Galactic GCs remains puzzling in this case, in contrast to the multitude of known GC neutron star XRBs. These results provide an interesting observational constraint for any black hole binary evolutionary model to satisfy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا