ترغب بنشر مسار تعليمي؟ اضغط هنا

Skyrmion Logic Clocked via Voltage Controlled Magnetic Anisotropy

122   0   0.0 ( 0 )
 نشر من قبل Xuan Hu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic skyrmions are exciting candidates for energy-efficient computing due to their non-volatility, detectability,and mobility. A recent proposal within the paradigm of reversible computing enables large-scale circuits composed ofdirectly-cascaded skyrmion logic gates, but it is limited by the manufacturing difficulty and energy costs associated withthe use of notches for skyrmion synchronization. To overcome these challenges, we therefore propose a skyrmion logicsynchronized via modulation of voltage-controlled magnetic anisotropy (VCMA). In addition to demonstrating theprinciple of VCMA synchronization through micromagnetic simulations, we also quantify the impacts of current den-sity, skyrmion velocity, and anisotropy barrier height on skyrmion motion. Further micromagnetic results demonstratethe feasibility of cascaded logic circuits in which VCMA synchronizers enable clocking and pipelining, illustrating afeasible pathway toward energy-efficient large-scale computing systems based on magnetic skyrmions.



قيم البحث

اقرأ أيضاً

Computational reversibility is necessary for quantum computation and inspires the development of computing systems in which information carriers are conserved as they flow through a circuit. While conservative logic provides an exciting vision for re versible computing with no energy dissipation, the large dimensions of information carriers in previous realizations detract from the system efficiency, and nanoscale conservative logic remains elusive. We therefore propose a non-volatile reversible computing system in which the information carriers are magnetic skyrmions, topologically-stable magnetic whirls. These nanoscale quasiparticles interact with one another via the spin-Hall and skyrmion-Hall effects as they propagate through ferromagnetic nanowires structured to form cascaded conservative logic gates. These logic gates can be directly cascaded in large-scale systems that perform complex logic functions, with signal integrity provided by clocked synchronization structures. The feasibility of the proposed system is demonstrated through micromagnetic simulations of Boolean logic gates, a Fredkin gate, and a cascaded full adder. As skyrmions can be transported in a pipelined and non-volatile manner at room temperature without the motion of any physical particles, this skyrmion logic system has the potential to deliver scalable high-speed low-power reversible Boolean and quantum computing.
The interplay between magneto-electricity (ME) and magneto-elasticity (MEL) is studied in the context of voltage-controlled magnetic anisotropy (VCMA). Strain plays more than a role of changing lattice constant but that of the internal electric field in the heterostructure. As a prototype, FePt/MgO(001) is visited, where the behavior of two interfaces are drastically different: one exhibits switching the other does not. Whether an external electric field ($E_{ext}$) is present or not, we found VCMA coefficient larger than 1 pJ/V$cdot$m, as a consequence of the rearrangement of $d$ orbitals with $m=pm1$ and $pm2$ in response to an external electric field. In addition, magneto-crystalline anisotropy (MA) is analyzed with strain taken into account, where non-linear feature is presented only accountable by invoking second-order MEL.
We demonstrate a voltage-controlled exchange bias effect in CoFeB/MgO/CoFeB magnetic tunnel junctions that is related to the interfacial Fe(Co)Ox formed between the CoFeB electrodes and the MgO barrier. The unique combination of interfacial antiferro magnetism, giant tunneling magnetoresistance, and sharp switching of the perpendicularly-magnetized CoFeB allows sensitive detection of the exchange bias. It is found that the exchange bias field can be isothermally controlled by magnetic fields at low temperatures. More importantly, the exchange bias can also be effectively manipulated by the electric field applied to the MgO barrier due to the voltage-controlled antiferromagnetic anisotropy in this system.
114 - P.-H. Chang , W. Fang , T. Ozaki 2020
The magnetic anisotropy in MgO-capped MnPt films and its voltage control are studied using first-principles calculations. Sharp variation of the magnetic anisotropy with film thickness, especially in the Pt-terminated film, suggests that it may be wi dely tuned by adjusting the film thickness. In thick films the linear voltage control coefficient is as large as 1.5 and $-0.6$ pJ/Vm for Pt-terminated and Mn-terminated interfaces, respectively. The combination of a widely tunable magnetic anisotropy energy and a large voltage-control coefficient suggest that MgO-capped MnPt films can serve as a versatile platform for magnetic memory and antiferromagnonic applications.
A hybrid structure combining the advantages of topological insulator (TI), dielectric ferromagnet (FM), and graphene is investigated to realize the electrically controlled correlation between electronic and magnetic subsystems for low-power, high-fun ctional applications. Two-dimensional Dirac fermion states provide an ideal environment to facilitate strong coupling through the surface interactions with proximate materials. The unique properties of FM-TI and FM-graphene interfaces make it possible for active manipulation and propagation, respectively, of the information state variable based solely on the spin logic platform through electrical gate biases. Our theoretical analysis verifies the feasibility of the concept for logic application with both current-driven and current-less interconnect approaches. The device/circuit characteristics are also examined in realistic conditions, suggesting the desired low-power performance with the estimated energy consumption for COPY/NOT as low as the textit{attojoule} level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا