ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantifying the spin mixing conductance of EuO/W heterostructures by spin Hall magnetoresistance experiments

182   0   0.0 ( 0 )
 نشر من قبل Matthias Althammer
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spin Hall magnetoresistance (SMR) allows to investigate the magnetic textures of magnetically ordered insulators in heterostructures with normal metals by magnetotransport experiments. We here report the observation of the SMR in in-situ prepared ferromagnetic EuO/W thin film bilayers with magnetically and chemically well-defined interfaces. We characterize the magnetoresistance effects utilizing angle-dependent and field-dependent magnetotransport measurements as a function of temperature. Applying the established SMR model, we derive and quantify the real and imaginary parts of the complex spin mixing interface conductance. We find that the imaginary part is by one order of magnitude larger than the real part. Both decrease with increasing temperature. This reduction is in agreement with thermal fluctuations in the ferromagnet.

قيم البحث

اقرأ أيضاً

Spin Hall effects intermix spin and charge currents even in nonmagnetic materials and, therefore, ultimately may allow the use of spin transport without the need for ferromagnets. We show how spin Hall effects can be quantified by integrating permall oy/normal metal (N) bilayers into a coplanar waveguide. A dc spin current in N can be generated by spin pumping in a controllable way by ferromagnetic resonance. The transverse dc voltage detected along the permalloy/N has contributions from both the anisotropic magnetoresistance (AMR) and the spin Hall effect, which can be distinguished by their symmetries. We developed a theory that accounts for both. In this way, we determine the spin Hall angle quantitatively for Pt, Au and Mo. This approach can readily be adapted to any conducting material with even very small spin Hall angles.
We present a theory of the spin Hall magnetoresistance (SMR) in multilayers made from an insulating ferromagnet F, such as yttrium iron garnet (YIG), and a normal metal N with spin-orbit interactions, such as platinum (Pt). The SMR is induced by the simultaneous action of spin Hall and inverse spin Hall effects and therefore a non-equilibrium proximity phenomenon. We compute the SMR in F$|$N and F$|$N$|$F layered systems, treating N by spin-diffusion theory with quantum mechanical boundary conditions at the interfaces in terms of the spin-mixing conductance. Our results explain the experimentally observed spin Hall magnetoresistance in N$|$F bilayers. For F$|$N$|$F spin valves we predict an enhanced SMR amplitude when magnetizations are collinear. The SMR and the spin-transfer torques in these trilayers can be controlled by the magnetic configuration.
The spin Hall magnetoresistance (SMR) effect arises from spin-transfer processes across the interface between a spin Hall active metal and an insulating magnet. While the SMR response of ferrimagnetic and antiferromagnetic insulators has been studied extensively, the SMR of a paramagnetic spin ensemble is not well established. Thus, we investigate herein the magnetoresistive response of as-deposited yttrium iron garnet/platinum thin film bilayers as a function of the orientation and the amplitude of an externally applied magnetic field. Structural and magnetic characterization show no evidence for crystalline order or spontaneous magnetization in the yttrium iron garnet layer. Nevertheless, we observe a clear magnetoresistance response with a dependence on the magnetic field orientation characteristic for the SMR. We propose two models for the origin of the SMR response in paramagnetic insulator/Pt heterostructures. The first model describes the SMR of an ensemble of non-interacting paramagnetic moments, while the second model describes the magnetoresistance arising by considering the total net moment. Interestingly, our experimental data are consistently described by the net moment picture, in contrast to the situation in compensated ferrimagnets or antiferromagnets.
87 - Yang Lv , James Kally , Tao Liu 2018
Thanks to its unique symmetry, the unidirectional spin Hall and Rashba-Edelstein magnetoresistance (USRMR) is of great fundamental and practical interest, particularly in the context of reading magnetization states in two-terminal spin-orbit torque s witching memory and logic devices. Recent studies show that topological insulators could improve USRMR amplitude. However, the topological insulator device configurations studied so far in this context, namely ferromagnetic metal/topological insulator bilayers and magnetically doped topological insulators, suffer from current shunting by the metallic layer and low Curie temperature, respectively. Here, we report large USRMR in a new material category - magnetic insulator/topological insulator bi-layered heterostructures. Such structures exhibit USRMR that is about an order of magnitude larger than the highest values reported so far in all-metal Ta/Co bilayers. We also demonstrate current-induced magnetization switching aided by an Oersted field, and electrical read out by the USRMR, as a prototype memory device.
We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/YIG) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا