ﻻ يوجد ملخص باللغة العربية
Deformations of amorphous polymer networks prepared with significant concentrations of liquid crystalline mesogens have been recently reported to undergo mechanotropic phase transitions. Here, we report that these mechanotropic phase transitions are accompanied by an elastocaloric response ($Delta T = 2.9 text{ K}$). Applied uniaxial strain to the elastomeric polymer network transitions the organization of the material from a disordered, amorphous state (order parameter $Q=0$) to the nematic phase ($Q=0.47$). Both the magnitude of the elastocaloric temperature change and mechanically induced order parameter are dependent on the concentration of liquid crystal mesogens in the material. While the observed temperature changes in these materials are smaller than those observed in shape memory alloys, the responsivity, defined as the temperature change divided by the input stress, is larger by an order of magnitude.
Studying the response of materials to strain can elucidate subtle properties of electronic structure in strongly correlated materials. So far, mostly the relation between strain and resistivity, the so called elastoresistivity, has been investigated.
We study the partitioning of cosolute particles in a thin film of a semi-flexible polymer network by a combination of coarse-grained (implicit-solvent) stochastic dynamics simulations and mean-field theory. We focus on a wide range of solvent qualiti
We study the thermodynamics of binary mixtures wherein the volume fraction of the minority component is less than the amount required to form a flat interface. Based on an explicit microscopic mean field theory, we show that the surface tension domin
We extend the Rouse model of polymer dynamics to situations of non-stationary chain growth. For a dragged polymer chain of length $N(t) = t^alpha$, we find two transitions in conformational dynamics. At $alpha= 1/2$, the propagation of tension and th
Due to their unique structural and mechanical properties, randomly-crosslinked polymer networks play an important role in many different fields, ranging from cellular biology to industrial processes. In order to elucidate how these properties are con