ترغب بنشر مسار تعليمي؟ اضغط هنا

The Age of Westerlund 1 Revisited

76   0   0.0 ( 0 )
 نشر من قبل Emma Beasor Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The cluster Westerlund~1 (Wd1) is host to a large variety of post main-sequence (MS) massive stars. The simultaneous presence of these stars can only be explained by stellar models if the cluster has a finely-tuned age of 4-5Myr, with several published studies independently claiming ages within this range. At this age, stellar models predict that the cool supergiants (CSGs) should have luminosities of $log(L/L_odot) approx 5.5$, close to the empirical luminosity limit. Here, we test that prediction using archival data and new photometry from SOFIA to estimate bolometric luminosities for the CSGs. We find that these stars are on average 0.4dex too faint to be 5Myr old, regardless of which stellar evolution model is used, and instead are indicative of a much older age of $10.4^{+1.3}_{-1.2}$Myr. We argue that neither systematic uncertainties in the extinction law nor stellar variability can explain this discrepancy. In reviewing various independent age estimates of Wd1 in the literature, we firstly show that those based on stellar diversity are unreliable. Secondly, we re-analyse Wd1s pre-MS stars employing the Damineli extinction law, finding an age of $7.2^{+1.1}_{-2.3}$Myr; older than that of previous studies, but which is vulnerable to systematic errors that could push the age close to 10Myr. However, there remains significant tension between the CSG age and that inferred from the eclipsing binary W13. We conclude that stellar evolution models cannot explain Wd1 under the single age paradigm. Instead, we propose that the stars in the Wd1 region formed over a period of several Myr.

قيم البحث

اقرأ أيضاً

Westerlund 1 (Wd1) is potentially the largest star cluster in the Galaxy. That designation critically depends upon the distance to the cluster, yet the cluster is highly obscured, making luminosity-based distance estimates difficult. Using {it Gaia} Data Release 2 (DR2) parallaxes and Bayesian inference, we infer a parallax of $0.35^{+0.07}_{-0.06}$ mas corresponding to a distance of $2.6^{+0.6}_{-0.4}$ kpc. To leverage the combined statistics of all stars in the direction of Wd1, we derive the Bayesian model for a cluster of stars hidden among Galactic field stars; this model includes the parallax zero-point. Previous estimates for the distance to Wd1 ranged from 1.0 to 5.5 kpc, although values around 5 kpc have usually been adopted. The {it Gaia} DR2 parallaxes reduce the uncertainty from a factor of 3 to 18% and rules out the most often quoted value of 5 kpc with 99% confidence. This new distance allows for more accurate mass and age determinations for the stars in Wd1. For example, the previously inferred initial mass at the main-sequence turn-off was around 40 M$_{odot}$; the new {it Gaia} DR2 distance shifts this down to about 22 M$_{odot}$. This has important implications for our understanding of the late stages of stellar evolution, including the initial mass of the magnetar and the LBV in Wd1. Similarly, the new distance suggests that the total cluster mass is about four times lower than previously calculated.
Massive stars and their stellar winds are important for a number of feedback processes. The mass lost in the stellar wind can help determine the end-point of the star as a NS or a BH. However, the impact of mass-loss on the post-Main Sequence evoluti onary stage of massive stars is not well understood. Westerlund 1 is an ideal astrophysical laboratory in which to study massive stars and their winds in great detail over a large range of different evolutionary phases. Aims: We aim to study the radio emission from Westerlund 1, in order to measure radio fluxes from the population of massive stars, and determine mass-loss rates and spectral indices where possible. Methods: Observations were carried out in 2015 and 2016 with the Australia telescope compact array (ATCA) at 5.5 and 9 GHz using multiple configurations, with maximum baselines ranging from 750m to 6km. Results: 30 stars were detected in the radio from the fully concatenated dataset, 10 of which were WRs (predominantly late type WN stars), 5 YHGs, 4 RSGs, 1 LBV star, the sgB[e] star W9, and several O and B supergiants. New source detections in the radio were found for 5 WR stars, and 5 OB supergiants. These detections have led to evidence for 3 new OB supergiant binary candidates, inferred from derived spectral index limits. Conclusions: Spectral indices and index limits were determined for massive stars in Westerlund 1. For cluster members found to have partially optically thick emission, mass-loss rates were calculated. Under the approximation of a thermally emitting stellar wind and a steady mass-loss rate, clumping ratios were then estimated for 8 WRs. Diffuse radio emission was detected throughout the cluster. Detections of knots of radio emission with no known stellar counterparts indicate the highly clumped structure of this intra-cluster medium, likely shaped by a dense cluster wind.
Westerlund 1 is the most important starburst cluster in the Galaxy due to its massive star content. We have performed BVIc and JKs photometry to investigate the initial mass function (IMF). By comparing the observed color with the spectral type - int rinsic color relation, we obtain the mean interstellar reddening of <E(B-V)>=4.19+/-0.23 and <E(J-Ks)>=1.70+/-0.21. Due to the heavy extinction toward the cluster, the zero-age main sequence fitting method based on optical photometry proved to be inappropriate for the distance determination, while the near-infrared photometry gave a reliable distance to the cluster -- 3.8 kpc from the empirical relation. Using the recent theoretical stellar evolution models with rotation, the age of the cluster is estimated to be 5.0+/-1.0 Myr. We derived the IMF in the massive part and obtained a fairly shallow slope of {Gamma} = -0.8 +/- 0.1. The integration of the IMF gave a total mass for the cluster in excess of 5.0 x 10^4 solar mass. The IMF shows a clear radial variation indicating the presence of mass segregation. We also discuss the possible star formation history of Westerlund 1 from the presence of red supergiants and relatively low-luminosity yellow hypergiants.
We report new 5.5 GHz radio observations of the massive star cluster Westerlund 1, taken by the Australia Telescope Compact Array, detecting nine of the ten yellow hypergiants (YHGs) and red supergiants (RSGs) within the cluster. Eight of nine source s are spatially resolved. The nebulae associated with the YHGs Wd1-4a, -12a and -265 demonstrate a cometary morphology - the first time this phenomenon has been observed for such stars. This structure is also echoed in the ejecta of the RSGs Wd1-20 and -26; in each case the cometary tails are directed away from the cluster core. The nebular emission around the RSG Wd1-237 is less collimated than these systems but once again appears more prominent in the hemisphere facing the cluster. Considered as a whole, the nebular morphologies provide compelling evidence for sculpting via a physical agent associated with Westerlund 1, such as a cluster wind.
142 - S. Ohm , J.A. Hinton , R. White 2013
Westerlund 1 (Wd 1) is the most massive stellar cluster in the Galaxy and associated with an extended region of TeV emission. Here we report the results of a search for GeV gamma-ray emission in this region. The analysis is based on ~4.5 years of Fer mi-LAT data and reveals significantly extended emission which we model as a Gaussian, resulting in a best-fit sigma of sigma_S = (0.475 +/- 0.05) deg and an offset from Wd 1 of ~1 deg. A partial overlap of the GeV emission with the TeV signal as reported by H.E.S.S. is found. We investigate the spectral and morphological characteristics of the gamma-ray emission and discuss its origin in the context of two distinct scenarios. Acceleration of electrons in a Pulsar Wind Nebula provides a reasonably natural interpretation of the GeV emission, but leaves the TeV emission unexplained. A scenario in which protons are accelerated in or near Wd 1 in supernova explosion(s) and are diffusing away and interacting with molecular material, seems consistent with the observed GeV and TeV emission, but requires a very high energy input in protons, ~10^51 erg, and rather slow diffusion. Observations of Wd 1 with a future gamma-ray detector such as CTA provide a very promising route to fully resolve the origin of the TeV and GeV emission in Wd 1 and provide a deeper understanding of the high-energy (HE) astrophysics of massive stellar clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا