ﻻ يوجد ملخص باللغة العربية
In this work, we present FFB6D, a Full Flow Bidirectional fusion network designed for 6D pose estimation from a single RGBD image. Our key insight is that appearance information in the RGB image and geometry information from the depth image are two complementary data sources, and it still remains unknown how to fully leverage them. Towards this end, we propose FFB6D, which learns to combine appearance and geometry information for representation learning as well as output representation selection. Specifically, at the representation learning stage, we build bidirectional fusion modules in the full flow of the two networks, where fusion is applied to each encoding and decoding layer. In this way, the two networks can leverage local and global complementary information from the other one to obtain better representations. Moreover, at the output representation stage, we designed a simple but effective 3D keypoints selection algorithm considering the texture and geometry information of objects, which simplifies keypoint localization for precise pose estimation. Experimental results show that our method outperforms the state-of-the-art by large margins on several benchmarks. Code and video are available at url{https://github.com/ethnhe/FFB6D.git}.
Robots and other smart devices need efficient object-based scene representations from their on-board vision systems to reason about contact, physics and occlusion. Recognized precise object models will play an important role alongside non-parametric
Estimating the 6D pose of objects from images is an important problem in various applications such as robot manipulation and virtual reality. While direct regression of images to object poses has limited accuracy, matching rendered images of an objec
6D pose estimation from a single RGB image is a fundamental task in computer vision. The current top-performing deep learning-based methods rely on an indirect strategy, i.e., first establishing 2D-3D correspondences between the coordinates in the im
In this paper, we propose a Bidirectional Attention Network (BANet), an end-to-end framework for monocular depth estimation (MDE) that addresses the limitation of effectively integrating local and global information in convolutional neural networks.
In this paper, we focus on estimating the 6D pose of objects in point clouds. Although the topic has been widely studied, pose estimation in point clouds remains a challenging problem due to the noise and occlusion. To address the problem, a novel 3D