ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate two methods that allow us to automatically create profitable DeFi trades, one well-suited to arbitrage and the other applicable to more complicated settings. We first adopt the Bellman-Ford-Moore algorithm with DEFIPOSER-ARB and then create logical DeFi protocol models for a theorem prover in DEFIPOSER-SMT. While DEFIPOSER-ARB focuses on DeFi transactions that form a cycle and performs very well for arbitrage, DEFIPOSER-SMT can detect more complicated profitable transactions. We estimate that DEFIPOSER-ARB and DEFIPOSER-SMT can generate an average weekly revenue of 191.48ETH (76,592USD) and 72.44ETH (28,976USD) respectively, with the highest transaction revenue being 81.31ETH(32,524USD) and22.40ETH (8,960USD) respectively. We further show that DEFIPOSER-SMT finds the known economic bZx attack from February 2020, which yields 0.48M USD. Our forensic investigations show that this opportunity existed for 69 days and could have yielded more revenue if exploited one day earlier. Our evaluation spans 150 days, given 96 DeFi protocol actions, and 25 assets. Looking beyond the financial gains mentioned above, forks deteriorate the blockchain consensus security, as they increase the risks of double-spending and selfish mining. We explore the implications of DEFIPOSER-ARB and DEFIPOSER-SMT on blockchain consensus. Specifically, we show that the trades identified by our tools exceed the Ethereum block reward by up to 874x. Given optimal adversarial strategies provided by a Markov Decision Process (MDP), we quantify the value threshold at which a profitable transaction qualifies as Miner ExtractableValue (MEV) and would incentivize MEV-aware miners to fork the blockchain. For instance, we find that on Ethereum, a miner with a hash rate of 10% would fork the blockchain if an MEV opportunity exceeds 4x the block reward.
Credit allows a lender to loan out surplus capital to a borrower. In the traditional economy, credit bears the risk that the borrower may default on its debt, the lender hence requires upfront collateral from the borrower, plus interest fee payments.
The decentralized and trustless nature of cryptocurrencies and blockchain technology leads to a shift in the digital world. The possibility to execute small programs, called smart contracts, on cryptocurrencies like Ethereum opened doors to countless
Decentralized finance, i.e., DeFi, has become the most popular type of application on many public blockchains (e.g., Ethereum) in recent years. Compared to the traditional finance, DeFi allows customers to flexibly participate in diverse blockchain f
Recently, the privacy guarantees of information dissemination protocols have attracted increasing research interests, among which the gossip protocols assume vital importance in various information exchange applications. In this work, we study the pr
The rapid growth of Decentralized Finance (DeFi) boosts the Ethereum ecosystem. At the same time, attacks towards DeFi applications (apps) are increasing. However, to the best of our knowledge, existing smart contract vulnerability detection tools ca