ترغب بنشر مسار تعليمي؟ اضغط هنا

Augmentation Strategies for Learning with Noisy Labels

119   0   0.0 ( 0 )
 نشر من قبل Yi Ding
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Imperfect labels are ubiquitous in real-world datasets. Several recent successful methods for training deep neural networks (DNNs) robust to label noise have used two primary techniques: filtering samples based on loss during a warm-up phase to curate an initial set of cleanly labeled samples, and using the output of a network as a pseudo-label for subsequent loss calculations. In this paper, we evaluate different augmentation strategies for algorithms tackling the learning with noisy labels problem. We propose and examine multiple augmentation strategies and evaluate them using synthetic datasets based on CIFAR-10 and CIFAR-100, as well as on the real-world dataset Clothing1M. Due to several commonalities in these algorithms, we find that using one set of augmentations for loss modeling tasks and another set for learning is the most effective, improving results on the state-of-the-art and other previous methods. Furthermore, we find that applying augmentation during the warm-up period can negatively impact the loss convergence behavior of correctly versus incorrectly labeled samples. We introduce this augmentation strategy to the state-of-the-art technique and demonstrate that we can improve performance across all evaluated noise levels. In particular, we improve accuracy on the CIFAR-10 benchmark at 90% symmetric noise by more than 15% in absolute accuracy, and we also improve performance on the Clothing1M dataset. (K. Nishi and Y. Ding contributed equally to this work)



قيم البحث

اقرأ أيضاً

Point cloud segmentation is a fundamental task in 3D. Despite recent progress on point cloud segmentation with the power of deep networks, current deep learning methods based on the clean label assumptions may fail with noisy labels. Yet, object clas s labels are often mislabeled in real-world point cloud datasets. In this work, we take the lead in solving this issue by proposing a novel Point Noise-Adaptive Learning (PNAL) framework. Compared to existing noise-robust methods on image tasks, our PNAL is noise-rate blind, to cope with the spatially variant noise rate problem specific to point clouds. Specifically, we propose a novel point-wise confidence selection to obtain reliable labels based on the historical predictions of each point. A novel cluster-wise label correction is proposed with a voting strategy to generate the best possible label taking the neighbor point correlations into consideration. We conduct extensive experiments to demonstrate the effectiveness of PNAL on both synthetic and real-world noisy datasets. In particular, even with $60%$ symmetric noisy labels, our proposed method produces much better results than its baseline counterpart without PNAL and is comparable to the ideal upper bound trained on a completely clean dataset. Moreover, we fully re-labeled the validation set of a popular but noisy real-world scene dataset ScanNetV2 to make it clean, for rigorous experiment and future research. Our code and data are available at url{https://shuquanye.com/PNAL_website/}.
We propose a framework using contrastive learning as a pre-training task to perform image classification in the presence of noisy labels. Recent strategies such as pseudo-labeling, sample selection with Gaussian Mixture models, weighted supervised co ntrastive learning have been combined into a fine-tuning phase following the pre-training. This paper provides an extensive empirical study showing that a preliminary contrastive learning step brings a significant gain in performance when using different loss functions: non-robust, robust, and early-learning regularized. Our experiments performed on standard benchmarks and real-world datasets demonstrate that: i) the contrastive pre-training increases the robustness of any loss function to noisy labels and ii) the additional fine-tuning phase can further improve accuracy but at the cost of additional complexity.
Multi-label image classification has generated significant interest in recent years and the performance of such systems often suffers from the not so infrequent occurrence of incorrect or missing labels in the training data. In this paper, we extend the state-of the-art of training classifiers to jointly deal with both forms of errorful data. We accomplish this by modeling noisy and missing labels in multi-label images with a new Noise Modeling Network (NMN) that follows our convolutional neural network (CNN), integrates with it, forming an end-to-end deep learning system, which can jointly learn the noise distribution and CNN parameters. The NMN learns the distribution of noise patterns directly from the noisy data without the need for any clean training data. The NMN can model label noise that depends only on the true label or is also dependent on the image features. We show that the integrated NMN/CNN learning system consistently improves the classification performance, for different levels of label noise, on the MSR-COCO dataset and MSR-VTT dataset. We also show that noise performance improvements are obtained when multiple instance learning methods are used.
Class imbalance and noisy labels are the norm rather than the exception in many large-scale classification datasets. Nevertheless, most works in machine learning typically assume balanced and clean data. There have been some recent attempts to tackle , on one side, the problem of learning from noisy labels and, on the other side, learning from long-tailed data. Each group of methods make simplifying assumptions about the other. Due to this separation, the proposed solutions often underperform when both assumptions are violated. In this work, we present a simple two-stage approach based on recent advances in self-supervised learning to treat both challenges simultaneously. It consists of, first, task-agnostic self-supervised pre-training, followed by task-specific fine-tuning using an appropriate loss. Most significantly, we find that self-supervised learning approaches are effectively able to cope with severe class imbalance. In addition, the resulting learned representations are also remarkably robust to label noise, when fine-tuned with an imbalance- and noise-resistant loss function. We validate our claims with experiments on CIFAR-10 and CIFAR-100 augmented with synthetic imbalance and noise, as well as the large-scale inherently noisy Clothing-1M dataset.
71 - Yi Wei , Xue Mei , Xin Liu 2021
Training a deep neural network heavily relies on a large amount of training data with accurate annotations. To alleviate this problem, various methods have been proposed to annotate the data automatically. However, automatically generating annotation s will inevitably yields noisy labels. In this paper, we propose a Data Selection and joint Training (DST) method to automatically select training samples with accurate annotations. Specifically, DST fits a mixture model according to the original annotation as well as the predicted label for each training sample, and the mixture model is utilized to dynamically divide the training dataset into a correctly labeled dataset, a correctly predicted set and a wrong dataset. Then, DST is trained with these datasets in a supervised manner. Due to confirmation bias problem, we train the two networks alternately, and each network is tasked to establish the data division to teach another network. For each iteration, the correctly labeled and predicted labels are reweighted respectively by the probabilities from the mixture model, and a uniform distribution is used to generate the probabilities of the wrong samples. Experiments on CIFAR-10, CIFAR-100 and Clothing1M demonstrate that DST is the comparable or superior to the state-of-the-art methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا