ﻻ يوجد ملخص باللغة العربية
Controlling the topology of structures self-assembled from a set of heterogeneous building blocks is highly desirable for many applications, but is poorly understood theoretically. Here we show that the thermodynamic theory of self-assembly involves an inevitable divergence in chemical potential. The divergence and its detailed structure are controlled by the spectrum of the transfer matrix, which summarizes all of self-assembly design degrees of freedom. By analyzing the transfer matrix, we map out the phase boundary between the designable structures and the unstructured aggregates, driven by the level of cross-talk.
We derive a model describing spatio-temporal organization of an array of microtubules interacting via molecular motors. Starting from a stochastic model of inelastic polar rods with a generic anisotropic interaction kernel we obtain a set of equation
Self-propelled colloidal objects, such as motile bacteria or synthetic microswimmers, have microscopically irreversible individual dynamics - a feature they share with all living systems. The incoherent behaviour of individual swimmers can then be ha
A challenge in designing self-assembling building blocks is to ensure the target state is both thermodynamically stable and kinetically accessible. These two objectives are known to be typically in competition, but it is not known how to simultaneous
We investigate the phase behavior and kinetics of a monodisperse mixture of active (textit{i.e.}, self-propelled) and passive isometric Brownian particles through Brownian dynamics simulations and theory. As in a purely active system, motility of the
Starting from a microscopic lattice model, we investigate clustering, micellization and micelle ordering in semi-dilute solutions of AB diblock copolymers in a selective solvent. To bridge the gap in length scales, from monomers to ordered micellar s