ترغب بنشر مسار تعليمي؟ اضغط هنا

Using Interstellar Clouds to Search for Galactic PeVatrons: Gamma-ray Signatures from Supernova Remnants

135   0   0.0 ( 0 )
 نشر من قبل Alison Mitchell
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Interstellar clouds can act as target material for hadronic cosmic rays; gamma rays subsequently produced through inelastic proton-proton collisions and spatially associated with such clouds can provide a key indicator of efficient particle acceleration. However, even in the case that particle acceleration proceeds up to PeV energies, the system of accelerator and nearby target material must fulfil a specific set of conditions in order to produce a detectable gamma-ray flux. In this study, we rigorously characterise the necessary properties of both cloud and accelerator. By using available Supernova Remnant (SNR) and interstellar cloud catalogues, we produce a ranked shortlist of the most promising target systems, those for which a detectable gamma-ray flux is predicted, in the case that particles are accelerated to PeV energies in a nearby SNR. We discuss detection prospects for future facilities including CTA, LHAASO and SWGO; and compare our predictions with known gamma-ray sources. The four interstellar clouds with the brightest predicted fluxes >100 TeV identified by this model are located at (l,b) = (330.05, 0.13), (15.82, -0.46), (271.09, -1.26), and (21.97, -0.29). These clouds are consistently bright under a range of model scenarios, including variation in the diffusion coefficient and particle spectrum. On average, a detectable gamma-ray flux is more likely for more massive clouds; systems with lower separation distance between the SNR and cloud; and for slightly older SNRs.

قيم البحث

اقرأ أيضاً

The giant molecular clouds (MCs) found in the Milky Way and similar galaxies play a crucial role in the evolution of these systems. The supernova explosions that mark the death of massive stars in these regions often lead to interactions between the supernova remnants (SNRs) and the clouds. These interactions have a profound effect on our understanding of SNRs. Shocks in SNRs should be capable of accelerating particles to cosmic ray (CR) energies with efficiencies high enough to power Galactic CRs. X-ray and gamma-ray studies have established the presence of relativistic electrons and protons is some SNRs and provided strong evidence for diffusive shock acceleration as the primary acceleration mechanism, including strongly amplified magnetic fields, temperature and ionization effects on the shock-heated plasmas, and modifications to the dynamical evolution of some systems. Because protons dominate the overall energetics of the CRs, it is crucial to understand this hadronic component even though electrons are much more efficient radiators and it can be difficult to identify the hadronic component. However, near MCs the densities are sufficiently high to allow the gamma-ray emission to be dominated by protons. Thus, these interaction sites provide some of our best opportunities to constrain the overall energetics of these particle accelerators. Here we summarize some key properties of interactions between SNRs and MCs, with an emphasis on recent X-ray and gamma-ray studies that are providing important constraints on our understanding of cosmic rays in our Galaxy.
Cosmic Ray (CR) interactions with the dense gas inside Giant Molecular Clouds (GMCs) produce neutral pions, which in turn decay into gamma rays. Thus, the gamma ray emission from GMCs is a direct tracer of the cosmic ray density and the matter densit y inside the clouds. Detection of enhanced TeV emission from GMCs, i.e., an emission significantly larger than what is expected from the average Galactic cosmic rays illuminating the cloud, can imply a variation in the local cosmic ray density, due to, for example, the presence of a recent accelerator in proximity to the cloud. Such gamma-ray observations can be crucial in probing the cosmic ray distribution across our Galaxy, but are complicated to perform with present generation Imaging Atmospheric Cherenkov Telescopes (IACTs). These studies require differentiating between the strong cosmic-ray induced background, the large scale diffuse emission, and the emission from the clouds, which is difficult to the small field of view of present generation IACTs. In this contribution, we use H.E.S.S. data collected over 16 years to search for TeV emission from GMCs in the inner molecular galacto-centric ring of our Galaxy. We implement a 3D FoV likelihood technique, and simultaneously model the hadronic background, the galactic diffuse emission and the emission expected from known VHE sources to probe for excess TeV gamma ray emission from GMCs.
We analyze the energy distributions of final (stable) products - gamma rays, neutrinos, and electrons - produced in inelastic proton-proton collisions in the PeV energy regime. We also calculate the energy spectrum of synchrotron radiation from secon dary electrons, assuming that these are promptly cooled in the surrounding magnetic field. We show that the synchrotron radiation has an energy distribution much shallower than that of primary protons, and hence we suggest to take advantage of such a feature in the spectral analysis of the highest energy (cut-off) emission region from particle accelerators. For a broad range of energy distributions in the parent protons, we propose simple analytical presentations for the spectra of secondaries in the cut-off region. These results can be used in the interpretation of high-energy radiation from PeVatrons - cosmic-ray factories accelerating protons to energies up to 1 PeV.
Shell-type supernova remnants (SNRs) are considered prime candidates for the acceleration of Galactic cosmic rays (CRs) up to the knee of the CR spectrum at $mathrm{E} approx mathrm{3}times mathrm{10}^mathrm{15}$ eV. Our Milky Way galaxy hosts more t han 350 SNRs discovered at radio wavelengths and at high energies, of which 220 fall into the H.E.S.S. Galactic Plane Survey (HGPS) region. Of those, only 50 SNRs are coincident with a H.E.S.S source and in 8 cases the very high-energy (VHE) emission is firmly identified as an SNR. The H.E.S.S. GPS provides us with a legacy for SNR population study in VHE $gamma$-rays and we use this rich data set to extract VHE flux upper limits from all undetected SNRs. Overall, the derived flux upper limits are not in contradiction with the canonical CR paradigm. Assuming this paradigm holds true, we can constrain typical ambient density values around shell-type SNRs to $nleq 7~textrm{cm}^textrm{-3}$ and electron-to-proton energy fractions above 10~TeV to $epsilon_textrm{ep} leq 5times 10^{-3}$. Furthermore, comparisons of VHE with radio luminosities in non-interacting SNRs reveal a behaviour that is in agreement with the theory of magnetic field amplification at shell-type SNRs.
131 - S. Ranasinghe , D. Leahy , J Stil 2021
Young Supernova remnants (SNRs) with smaller angular sizes are likely missing from existing radio SNR catalogues, caused by observational constraints and selection effects. In order to find new compact radio SNR candidates, we searched the high angul ar resolution (25) THOR radio survey of the first quadrant of the galaxy. We selected sources with non-thermal radio spectra. HI absorption spectra and channel maps were used to identify which sources are galactic and to estimate their distances. Two new compact SNRs were found: G31.299$-$0.493 and G18.760$-$0.072, of which the latter was a previously suggested SNR candidate. The distances to these SNRs are 5.0 $pm$ 0.3 kpc and 4.7 $pm$ 0.2 kpc, respectively. Based on the SN rate in the galaxy or on the statistics of known SNRs, we estimate that there are 15$-$20 not yet detected compact SNRs in the galaxy and that the THOR survey area should contain three or four. Our detection of two SNRs (half the expected number) is consistent with the THOR sensitivity limit compared with the distribution of integrated flux densities of SNRs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا