ترغب بنشر مسار تعليمي؟ اضغط هنا

OSOUM Framework for Trading Data Research

131   0   0.0 ( 0 )
 نشر من قبل Roee Shraga PhD
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the last decades, data have become a cornerstone component in many business decisions, and copious resources are being poured into production and acquisition of the high-quality data. This emerging market possesses unique features, and thus came under the spotlight for the stakeholders and researchers alike. In this work, we aspire to provide the community with a set of tools for making business decisions, as well as analysis of markets behaving according to certain rules. We supply, to the best of our knowledge, the first open source simulation platform, termed Open SOUrce Market Simulator (OSOUM) to analyze trading markets and specifically data markets. We also describe and implement a specific data market model, consisting of two types of agents: sellers who own various datasets available for acquisition, and buyers searching for relevant and beneficial datasets for purchase. The current simulation treats data as an infinite supply product. Yet, other market settings may be easily implemented using OSOUM. Although commercial frameworks, intended for handling data markets, already exist, we provide a free and extensive end-to-end research tool for simulating possible behavior for both buyers and sellers participating in (data) markets.



قيم البحث

اقرأ أيضاً

Breakthrough advances in reinforcement learning (RL) research have led to a surge in the development and application of RL. To support the field and its rapid growth, several frameworks have emerged that aim to help the community more easily build ef fective and scalable agents. However, very few of these frameworks exclusively support multi-agent RL (MARL), an increasingly active field in itself, concerned with decentralised decision-making problems. In this work, we attempt to fill this gap by presenting Mava: a research framework specifically designed for building scalable MARL systems. Mava provides useful components, abstractions, utilities and tools for MARL and allows for simple scaling for multi-process system training and execution, while providing a high level of flexibility and composability. Mava is built on top of DeepMinds Acme citep{hoffman2020acme}, and therefore integrates with, and greatly benefits from, a wide range of already existing single-agent RL components made available in Acme. Several MARL baseline systems have already been implemented in Mava. These implementations serve as examples showcasing Mavas reusable features, such as interchangeable system architectures, communication and mixing modules. Furthermore, these implementations allow existing MARL algorithms to be easily reproduced and extended. We provide experimental results for these implementations on a wide range of multi-agent environments and highlight the benefits of distributed system training.
Simulation can enable the study of recommender system (RS) evolution while circumventing many of the issues of empirical longitudinal studies; simulations are comparatively easier to implement, are highly controlled, and pose no ethical risk to human participants. How simulation can best contribute to scientific insight about RS alongside qualitative and quantitative empirical approaches is an open question. Philosophers and researchers have long debated the epistemological nature of simulation compared to wholly theoretical or empirical methods. Simulation is often implicitly or explicitly conceptualized as occupying a middle ground between empirical and theoretical approaches, allowing researchers to realize the benefits of both. However, what is often ignored in such arguments is that without firm grounding in any single methodological tradition, simulation studies have no agreed upon scientific norms or standards, resulting in a patchwork of theoretical motivations, approaches, and implementations that are difficult to reconcile. In this position paper, we argue that simulation studies of RS are conceptually similar to empirical experimental approaches and therefore can be evaluated using the standards of empirical research methods. Using this empirical lens, we argue that the combination of high heterogeneity in approaches and low transparency in methods in simulation studies of RS has limited their interpretability, generalizability, and replicability. We contend that by adopting standards and practices common in empirical disciplines, simulation researchers can mitigate many of these weaknesses.
The question we raise through this paper is: Is it economically feasible to trade consumer personal information with their formal consent (permission) and in return provide them incentives (monetary or otherwise)?. In view of (a) the behavioral assum ption that humans are `compromising beings and have privacy preferences, (b) privacy as a good not having strict boundaries, and (c) the practical inevitability of inappropriate data leakage by data holders downstream in the data-release supply-chain, we propose a design of regulated efficient/bounded inefficient economic mechanisms for oligopoly data trading markets using a novel preference function bidding approach on a simplified sellers-broker market. Our methodology preserves the heterogeneous privacy preservation constraints (at a grouped consumer, i.e., app, level) upto certain compromise levels, and at the same time satisfies information demand (via the broker) of agencies (e.g., advertising organizations) that collect client data for the purpose of targeted behavioral advertising.
In the 21st Century information environment, adversarial actors use disinformation to manipulate public opinion. The distribution of false, misleading, or inaccurate information with the intent to deceive is an existential threat to the United States --distortion of information erodes trust in the socio-political institutions that are the fundamental fabric of democracy: legitimate news sources, scientists, experts, and even fellow citizens. As a result, it becomes difficult for society to come together within a shared reality; the common ground needed to function effectively as an economy and a nation. Computing and communication technologies have facilitated the exchange of information at unprecedented speeds and scales. This has had countless benefits to society and the economy, but it has also played a fundamental role in the rising volume, variety, and velocity of disinformation. Technological advances have created new opportunities for manipulation, influence, and deceit. They have effectively lowered the barriers to reaching large audiences, diminishing the role of traditional mass media along with the editorial oversight they provided. The digitization of information exchange, however, also makes the practices of disinformation detectable, the networks of influence discernable, and suspicious content characterizable. New tools and approaches must be developed to leverage these affordances to understand and address this growing challenge.
Computing devices are vital to all areas of modern life and permeate every aspect of our society. The ubiquity of computing and our reliance on it has been accelerated and amplified by the COVID-19 pandemic. From education to work environments to hea lthcare to defense to entertainment - it is hard to imagine a segment of modern life that is not touched by computing. The security of computers, systems, and applications has been an active area of research in computer science for decades. However, with the confluence of both the scale of interconnected systems and increased adoption of artificial intelligence, there are many research challenges the community must face so that our society can continue to benefit and risks are minimized, not multiplied. Those challenges range from security and trust of the information ecosystem to adversarial artificial intelligence and machine learning. Along with basic research challenges, more often than not, securing a system happens after the design or even deployment, meaning the security community is routinely playing catch-up and attempting to patch vulnerabilities that could be exploited any minute. While security measures such as encryption and authentication have been widely adopted, questions of security tend to be secondary to application capability. There needs to be a sea-change in the way we approach this critically important aspect of the problem: new incentives and education are at the core of this change. Now is the time to refocus research community efforts on developing interconnected technologies with security baked in by design and creating an ecosystem that ensures adoption of promising research developments. To realize this vision, two additional elements of the ecosystem are necessary - proper incentive structures for adoption and an educated citizenry that is well versed in vulnerabilities and risks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا