ترغب بنشر مسار تعليمي؟ اضغط هنا

Unmasking Face Embeddings by Self-restrained Triplet Loss for Accurate Masked Face Recognition

209   0   0.0 ( 0 )
 نشر من قبل Fadi Boutros
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the face as a biometric identity trait is motivated by the contactless nature of the capture process and the high accuracy of the recognition algorithms. After the current COVID-19 pandemic, wearing a face mask has been imposed in public places to keep the pandemic under control. However, face occlusion due to wearing a mask presents an emerging challenge for face recognition systems. In this paper, we presented a solution to improve the masked face recognition performance. Specifically, we propose the Embedding Unmasking Model (EUM) operated on top of existing face recognition models. We also propose a novel loss function, the Self-restrained Triplet (SRT), which enabled the EUM to produce embeddings similar to these of unmasked faces of the same identities. The achieved evaluation results on two face recognition models and two real masked datasets proved that our proposed approach significantly improves the performance in most experimental settings.



قيم البحث

اقرأ أيضاً

In order to effectively prevent the spread of COVID-19 virus, almost everyone wears a mask during coronavirus epidemic. This almost makes conventional facial recognition technology ineffective in many cases, such as community access control, face acc ess control, facial attendance, facial security checks at train stations, etc. Therefore, it is very urgent to improve the recognition performance of the existing face recognition technology on the masked faces. Most current advanced face recognition approaches are designed based on deep learning, which depend on a large number of face samples. However, at present, there are no publicly available masked face recognition datasets. To this end, this work proposes three types of masked face datasets, including Masked Face Detection Dataset (MFDD), Real-world Masked Face Recognition Dataset (RMFRD) and Simulated Masked Face Recognition Dataset (SMFRD). Among them, to the best of our knowledge, RMFRD is currently theworlds largest real-world masked face dataset. These datasets are freely available to industry and academia, based on which various applications on masked faces can be developed. The multi-granularity masked face recognition model we developed achieves 95% accuracy, exceeding the results reported by the industry. Our datasets are available at: https://github.com/X-zhangyang/Real-World-Masked-Face-Dataset.
97 - Hang Du , Hailin Shi , Yinglu Liu 2021
Near-infrared to visible (NIR-VIS) face recognition is the most common case in heterogeneous face recognition, which aims to match a pair of face images captured from two different modalities. Existing deep learning based methods have made remarkable progress in NIR-VIS face recognition, while it encounters certain newly-emerged difficulties during the pandemic of COVID-19, since people are supposed to wear facial masks to cut off the spread of the virus. We define this task as NIR-VIS masked face recognition, and find it problematic with the masked face in the NIR probe image. First, the lack of masked face data is a challenging issue for the network training. Second, most of the facial parts (cheeks, mouth, nose etc.) are fully occluded by the mask, which leads to a large amount of loss of information. Third, the domain gap still exists in the remaining facial parts. In such scenario, the existing methods suffer from significant performance degradation caused by the above issues. In this paper, we aim to address the challenge of NIR-VIS masked face recognition from the perspectives of training data and training method. Specifically, we propose a novel heterogeneous training method to maximize the mutual information shared by the face representation of two domains with the help of semi-siamese networks. In addition, a 3D face reconstruction based approach is employed to synthesize masked face from the existing NIR image. Resorting to these practices, our solution provides the domain-invariant face representation which is also robust to the mask occlusion. Extensive experiments on three NIR-VIS face datasets demonstrate the effectiveness and cross-dataset-generalization capacity of our method.
This paper presents a summary of the Masked Face Recognition Competitions (MFR) held within the 2021 International Joint Conference on Biometrics (IJCB 2021). The competition attracted a total of 10 participating teams with valid submissions. The aff iliations of these teams are diverse and associated with academia and industry in nine different countries. These teams successfully submitted 18 valid solutions. The competition is designed to motivate solutions aiming at enhancing the face recognition accuracy of masked faces. Moreover, the competition considered the deployability of the proposed solutions by taking the compactness of the face recognition models into account. A private dataset representing a collaborative, multi-session, real masked, capture scenario is used to evaluate the submitted solutions. In comparison to one of the top-performing academic face recognition solutions, 10 out of the 18 submitted solutions did score higher masked face verification accuracy.
In face recognition, designing margin-based (e.g., angular, additive, additive angular margins) softmax loss functions plays an important role in learning discriminative features. However, these hand-crafted heuristic methods are sub-optimal because they require much effort to explore the large design space. Recently, an AutoML for loss function search method AM-LFS has been derived, which leverages reinforcement learning to search loss functions during the training process. But its search space is complex and unstable that hindering its superiority. In this paper, we first analyze that the key to enhance the feature discrimination is actually textbf{how to reduce the softmax probability}. We then design a unified formulation for the current margin-based softmax losses. Accordingly, we define a novel search space and develop a reward-guided search method to automatically obtain the best candidate. Experimental results on a variety of face recognition benchmarks have demonstrated the effectiveness of our method over the state-of-the-art alternatives.
In this paper, we address the problem of face recognition with masks. Given the global health crisis caused by COVID-19, mouth and nose-covering masks have become an essential everyday-clothing-accessory. This sanitary measure has put the state-of-th e-art face recognition models on the ropes since they have not been designed to work with masked faces. In addition, the need has arisen for applications capable of detecting whether the subjects are wearing masks to control the spread of the virus. To overcome these problems a full training pipeline is presented based on the ArcFace work, with several modifications for the backbone and the loss function. From the original face-recognition dataset, a masked version is generated using data augmentation, and both datasets are combined during the training process. The selected network, based on ResNet-50, is modified to also output the probability of mask usage without adding any computational cost. Furthermore, the ArcFace loss is combined with the mask-usage classification loss, resulting in a new function named Multi-Task ArcFace (MTArcFace). Experimental results show that the proposed approach highly boosts the original model accuracy when dealing with masked faces, while preserving almost the same accuracy on the original non-masked datasets. Furthermore, it achieves an average accuracy of 99.78% in mask-usage classification.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا