ﻻ يوجد ملخص باللغة العربية
We present $^{12}$CO ($J$ = 2-1), $^{13}$CO ($J$ = 2-1), and C$^{18}$O ($J$ = 2-1) observations toward GMC-8, one of the most massive giant molecular clouds (GMCs) in M33 using ALMA with an angular resolution of 0.44 $times$ 0.27 ($sim$2 pc $times$ 1pc). The earlier studies revealed that its high-mass star formation is inactive in spite of a sufficient molecular reservoir with the total mass of $sim$10$^{6}$ $M_{odot}$. The high-angular resolution data enable us to resolve this peculiar source down to a molecular clump scale. One of the GMCs remarkable features is that a round-shaped gas structure (the Main cloud ) extends over $sim$50 pc scale, which is quite different from the other two active star-forming GMCs dominated by remarkable filaments/shells obtained by our series of studies in M33. The fraction of the relatively dense gas traced by the $^{13}$CO data with respect to the total molecular mass is only $sim$2 %, suggesting that their spatial structure and the density are not well developed to reach an active star formation. The CO velocity analysis shows that the GMC is composed of a single component as a whole, but we found some local velocity fluctuations in the Main cloud and extra blueshifted components at the outer regions. Comparing the CO with previously published large-scale H I data, we suggest that an external atomic gas flow supplied a sufficient amount of material to grow the GMC up to $sim$10$^6$ $M_{odot}$.
We report the first evidence for high-mass star formation triggered by collisions of molecular clouds in M33. Using the Atacama Large Millimeter/submillimeter Array, we spatially resolved filamentary structures of giant molecular cloud 37 in M33 usin
We report molecular line and continuum observations toward one of the most massive giant molecular clouds (GMCs), GMC-16, in M33 using ALMA with an angular resolution of 0$$44 $times$ 0$$27 ($sim$2 pc $times$ 1 pc). We have found that the GMC is comp
We present the results of ALMA observations in $^{12}$CO($J=2-1$), $^{13}$CO($J=2-1$), and C$^{18}$O($J=2-1$) lines and 1.3 mm continuum emission toward a massive ($sim 10^6 M_{odot}$) giant molecular cloud associated with the giant H II region NGC 6
Context. Measuring star formation at a local scale is important to constrain star formation laws. Yet, it is not clear whether and how the measure of star formation is affected by the spatial scale at which a galaxy is observed. Aims. We want to unde
We report on a multi parameter analysis of giant molecular clouds (GMCs) in the nearby spiral galaxy M33. A catalog of GMCs identifed in 12CO(J=3-2) was used to compile associated 12CO(J=1-0), dust, stellar mass and star formation rate. Each of the 5