ترغب بنشر مسار تعليمي؟ اضغط هنا

Active polymer rings: activity-induced collapse and dynamical arrest

103   0   0.0 ( 0 )
 نشر من قبل Emanuele Locatelli
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate, using numerical simulations, the conformations of isolated active ring polymers. We find that the their behaviour depends crucially on their size: short rings ($N lesssim$ 100) are swelled whereas longer rings ($N gtrsim$ 200) collapse, at sufficiently high activity. By investigating the non-equilibrium process leading to the steady state, we find a universal route driving both outcomes; we highlight the central role of steric interactions, at variance with linear chains, and of topology conservation. We further show that the collapsed rings are arrested by looking at different observables, all underlining the presence of an extremely long time scales at the steady state, associated with the internal dynamics of the collapsed section. Finally, we found that is some circumstances the collapsed state spins about its axis.



قيم البحث

اقرأ أيضاً

Dynamics of various biological filaments can be understood within the framework of active polymer models. Here we consider a bead-spring model for a flexible polymer chain in which the active interaction among the beads is introduced via an alignment rule adapted from the Vicsek model. Following a quench from the high-temperature coil phase to a low-temperature state point, we study the coarsening kinetics via molecular dynamics (MD) simulations using the Langevin thermostat. For the passive polymer case the low-temperature equilibrium state is a compact globule. Results from our MD simulations reveal that though the globular state is also the typical final state in the active case, the nonequilibrium pathways to arrive at such a state differ from the passive picture due to the alignment interaction among the beads. We notice that deviations from the intermediate pearl-necklace-like arrangement, that is observed in the passive case, and the formation of more elongated dumbbell-like structures increase with increasing activity. Furthermore, it appears that while a small active force on the beads certainly makes the coarsening process much faster, there exists nonmonotonic dependence of the collapse time on the strength of active interaction. We quantify these observations by comparing the scaling laws for the collapse time and growth of pearls with the passive case.
Turbulence in driven stratified active matter is considered. The relevant parameters characterizing the problem are the Reynolds number Re and an active matter Richardson-like number,R. In the mixing limit,Re>>1, R<<1, we show that the standard Kolmo gorov energy spectrum 5/3 law is realized. On the other hand, in the stratified limit, Re>>1,R>>1, there is a new turbulence universality class with a 7/5 law. The crossover from one regime to the other is discussed in detail. Experimental predictions and probes are also discussed.
Active fluids are intrinsically out-of-equilibrium systems due to the internal energy injection of the active constituents. We show here that a transition from a motion-less isotropic state towards a flowing polar one can be possibly driven by the so le active injection through the action of polar-hydrodynamic interactions in absence of an ad hoc free-energy which favors the development of an ordered phase. In particular, we propose an analytical argument and we perform lattice Boltzmann simulations where the appearance of large temporal fluctuations in the polar fraction of the system is observed at the transition point. Moreover, we make use of a scale-to-scale analysis to unveil the energy transfer mechanism, proving that elastic absorption plays a relevant role in the overall dynamics of the system, contrary to what reported in previous works on the usual active gel theory where this term could be factually neglected.
192 - B. Marcone , E. Orlandini , 2007
We study by Monte Carlo simulations a model of knotted polymer ring adsorbing onto an impenetrable, attractive wall. The polymer is described by a self-avoiding polygon (SAP) on the cubic lattice. We find that the adsorption transition temperature, t he crossover exponent $phi$ and the metric exponent $ u$, are the same as in the model where the topology of the ring is unrestricted. By measuring the average length of the knotted portion of the ring we are able to show that adsorbed knots are localized. This knot localization transition is triggered by the adsorption transition but is accompanied by a less sharp variation of the exponent related to the degree of localization. Indeed, for a whole interval below the adsorption transition, one can not exclude a contiuous variation with temperature of this exponent. Deep into the adsorbed phase we are able to verify that knot localization is strong and well described in terms of the flat knot model.
Shear responsive surfaces offer potential advances in a number of applications. Surface functionalisation using polymer brushes is one route to such properties, particularly in the case of entangled polymers. We report on neutron reflectometry measur ements of polymer brushes in entangled polymer solutions performed under controlled shear, as well as coarse-grained computer simulations corresponding to these interfaces. Here we show a reversible and reproducible collapse of the brushes, increasing with the shear rate. Using two brushes of greatly different chain lengths and grafting densities, we demonstrate that the dynamics responsible for the structural change of the brush are governed by the free chains in solution rather than the brush itself, within the range of parameters examined. The phenomenon of the brush collapse could find applications in the tailoring of nanosensors, and as a way to dynamically control surface friction and adhesion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا