ﻻ يوجد ملخص باللغة العربية
We investigate the feasibility of sample average approximation (SAA) for general stochastic optimization problems, including two-stage stochastic programming without the relatively complete recourse assumption. Instead of analyzing problems with specific structures, we utilize results from the Vapnik-Chervonenkis (VC) dimension and Probably Approximately Correct learning to provide a general framework that offers explicit feasibility bounds for SAA solutions under minimal structural or distributional assumption. We show that, as long as the hypothesis class formed by the feasbible region has a finite VC dimension, the infeasibility of SAA solutions decreases exponentially with computable rates and explicitly identifiable accompanying constants. We demonstrate how our bounds apply more generally and competitively compared to existing results.
The disjointness problem - where Alice and Bob are given two subsets of ${1, dots, n}$ and they have to check if their sets intersect - is a central problem in the world of communication complexity. While both deterministic and randomized communicati
In machine learning and optimization community there are two main approaches for convex risk minimization problem, namely, the Stochastic Approximation (SA) and the Sample Average Approximation (SAA). In terms of oracle complexity (required number of
We show that sparsity constrained optimization problems over low dimensional spaces tend to have a small duality gap. We use the Shapley-Folkman theorem to derive both data-driven bounds on the duality gap, and an efficient primalization procedure to
In this paper, we will develop a systematic approach to deriving guaranteed bounds for approximate dynamic programming (ADP) schemes in optimal control problems. Our approach is inspired by our recent results on bounding the performance of greedy str
Several issues in machine learning and inverse problems require to generate discrete data, as if sampled from a model probability distribution. A common way to do so relies on the construction of a uniform probability distribution over a set of $N$ p