ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Messenger Astrophysics with the Cosmic Neutrino Background

65   0   0.0 ( 0 )
 نشر من قبل Christopher Tully
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The massive neutrinos of the Cosmic Neutrino Background (C$ u$B) are fundamental ingredients of the radiation-dominated early universe and are important non-relativistic probes of the large-scale structure formation in the late universe. The dominant source of anisotropies in the neutrino flux distribution on the sky are highly amplified integrals of metric perturbations encountered during the non-relativistic phase of the C$ u$B. This paper numerically compares the line-of-sight methods for computing C$ u$B anisotropies with the Einstein-Boltzmann hierarchy solutions in linear theory for a range of neutrino masses. Angular power spectra are computed that are relevant to a future polarized tritium target run of the PTOLEMY experiment. Correlations between the C$ u$B sky maps and galactic survey data are derived using line-of-sight techniques and discussed in the context of multi-messenger astrophysics.

قيم البحث

اقرأ أيضاً

The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) is a NASA Astrophysics probe-class mission designed to observe ultra-high energy cosmic rays (UHECRs) and cosmic neutrinos from space. Astro2020 APC white paper: Medium-class Space Particle Astrophysics Project.
Multi-messenger astrophysics is becoming a major avenue to explore the Universe, with the potential to span a vast range of redshifts. The growing synergies between different probes is opening new frontiers, which promise profound insights into sever al aspects of fundamental physics and cosmology. In this context, THESEUS will play a central role during the 2030s in detecting and localizing the electromagnetic counterparts of gravitational wave and neutrino sources that the unprecedented sensitivity of next generation detectors will discover at much higher rates than the present. Here, we review the most important target signals from multi-messenger sources that THESEUS will be able to detect and characterize, discussing detection rate expectations and scientific impact.
The past year has witnessed discovery of the first identified counterparts to a gravitational wave transient (GW 170817A) and a very high-energy neutrino (IceCube-170922A). These source identifications, and ensuing detailed studies, have realized lon gstanding dreams of astronomers and physicists to routinely carry out observations of cosmic sources by other than electromagnetic means, and inaugurated the era of multi-messenger astronomy. While this new era promises extraordinary physical insights into the universe, it brings with it new challenges, including: highly heterogeneous, high-volume, high-velocity datasets; globe-spanning cross-disciplinary teams of researchers, regularly brought together into transient collaborations; an extraordinary breadth and depth of domain-specific knowledge and computing resources required to anticipate, model, and interpret observations; and the routine need for adaptive, distributed, rapid-response observing campaigns to fully exploit the scientific potential of each source. We argue, therefore, that the time is ripe for the community to conceive and propose an Institute for Multi-Messenger Astrophysics that would coordinate its resources in a sustained and strategic fashion to efficiently address these challenges, while simultaneously serving as a center for education and key supporting activities. In this fashion, we can prepare now to realize the bright future that we see, beyond, through these newly opened windows onto the universe.
RNO is the mid-scale discovery instrument designed to make the first observation of neutrinos from the cosmos at extreme energies, with sensitivity well beyond current instrument capabilities. This new observatory will be the largest ground-based neu trino telescope to date, enabling the measurement of neutrinos above $10^{16}$ eV, determining the nature of the astrophysical neutrino flux that has been measured by IceCube at higher energies, similarly extending the reach of multi-messenger astrophysics to the highest energies, and enabling investigations of fundamental physics at energies unreachable by particle accelerators on Earth.
Pulsar timing arrays (PTAs) are on the verge of detecting low-frequency gravitational waves (GWs) from supermassive black hole binaries (SMBHBs). With continued observations of a large sample of millisecond pulsars, PTAs will reach this major milesto ne within the next decade. Already, SMBHB candidates are being identified by electromagnetic surveys in ever-increasing numbers; upcoming surveys will enhance our ability to detect and verify candidates, and will be instrumental in identifying the host galaxies of GW sources. Multi-messenger (GW and electromagnetic) observations of SMBHBs will revolutionize our understanding of the co-evolution of SMBHs with their host galaxies, the dynamical interactions between binaries and their galactic environments, and the fundamental physics of accretion. Multi-messenger observations can also make SMBHBs standard sirens for cosmological distance measurements out to $zsimeq0.5$. LIGO has already ushered in breakthrough insights in our knowledge of black holes. The multi-messenger detection of SMBHBs with PTAs will be a breakthrough in the years $2020-2030$ and beyond, and prepare us for LISA to help complete our views of black hole demographics and evolution at higher redshifts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا