ﻻ يوجد ملخص باللغة العربية
The massive neutrinos of the Cosmic Neutrino Background (C$ u$B) are fundamental ingredients of the radiation-dominated early universe and are important non-relativistic probes of the large-scale structure formation in the late universe. The dominant source of anisotropies in the neutrino flux distribution on the sky are highly amplified integrals of metric perturbations encountered during the non-relativistic phase of the C$ u$B. This paper numerically compares the line-of-sight methods for computing C$ u$B anisotropies with the Einstein-Boltzmann hierarchy solutions in linear theory for a range of neutrino masses. Angular power spectra are computed that are relevant to a future polarized tritium target run of the PTOLEMY experiment. Correlations between the C$ u$B sky maps and galactic survey data are derived using line-of-sight techniques and discussed in the context of multi-messenger astrophysics.
The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) is a NASA Astrophysics probe-class mission designed to observe ultra-high energy cosmic rays (UHECRs) and cosmic neutrinos from space. Astro2020 APC white paper: Medium-class Space Particle Astrophysics Project.
Multi-messenger astrophysics is becoming a major avenue to explore the Universe, with the potential to span a vast range of redshifts. The growing synergies between different probes is opening new frontiers, which promise profound insights into sever
The past year has witnessed discovery of the first identified counterparts to a gravitational wave transient (GW 170817A) and a very high-energy neutrino (IceCube-170922A). These source identifications, and ensuing detailed studies, have realized lon
RNO is the mid-scale discovery instrument designed to make the first observation of neutrinos from the cosmos at extreme energies, with sensitivity well beyond current instrument capabilities. This new observatory will be the largest ground-based neu
Pulsar timing arrays (PTAs) are on the verge of detecting low-frequency gravitational waves (GWs) from supermassive black hole binaries (SMBHBs). With continued observations of a large sample of millisecond pulsars, PTAs will reach this major milesto