ترغب بنشر مسار تعليمي؟ اضغط هنا

The tidal evolution of dark matter substructure -- II. The impact of artificial disruption on subhalo mass functions and radial profiles

69   0   0.0 ( 0 )
 نشر من قبل Sheridan Green
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Several recent studies have indicated that artificial subhalo disruption (the spontaneous, non-physical disintegration of a subhalo) remains prevalent in state-of-the-art dark matter-only cosmological simulations. In order to quantify the impact of disruption on the inferred subhalo demographics, we augment the semi-analytical SatGen dynamical subhalo evolution model with an improved treatment of tidal stripping that is calibrated using the DASH database of idealized high-resolution simulations of subhalo evolution, which are free from artificial disruption. We also develop a model of artificial disruption that reproduces the statistical properties of disruption in the Bolshoi simulation. Using this framework, we predict subhalo mass functions (SHMFs), number density profiles, and substructure mass fractions and study how these quantities are impacted by artificial disruption and mass resolution limits. We find that artificial disruption affects these quantities at the $10-20%$ level, ameliorating previous concerns that it may suppress the SHMF by as much as a factor of two. We demonstrate that semi-analytical substructure modeling must include orbit integration in order to properly account for splashback haloes, which make up roughly half of the subhalo population. We show that the resolution limit of $N$-body simulations, rather than artificial disruption, is the primary cause of the radial bias in subhalo number density found in dark matter-only simulations. Hence, we conclude that the mass resolution remains the primary limitation of using such simulations to study subhaloes. Our model provides a fast, flexible, and accurate alternative to studying substructure statistics in the absence of both numerical resolution limits and artificial disruption.



قيم البحث

اقرأ أيضاً

The abundance, distribution and inner structure of satellites of galaxy clusters can be sensitive probes of the properties of dark matter. We run 30 cosmological zoom-in simulations with self-interacting dark matter (SIDM), with a velocity-dependent cross-section, to study the properties of subhalos within cluster-mass hosts. We find that the abundance of subhalos that survive in the SIDM simulations are suppressed relative to their cold dark matter (CDM) counterparts. Once the population of disrupted subhalos -- which may host orphan galaxies -- are taken into account, satellite galaxy populations in CDM and SIDM models can be reconciled. However, even in this case, the inner structure of subhalos are significantly different in the two dark matter models. We study the feasibility of using the weak lensing signal from the subhalo density profiles to distinguish between the cold and self-interacting dark matter while accounting for the potential contribution of orphan galaxies. We find that the effects of self-interactions on the density profile of subhalos can appear degenerate with subhalo disruption in CDM, when orphans are accounted for. With current error bars from the Subaru Hyper Suprime-Cam Strategic Program, we find that subhalos in the outskirts of clusters (where disruption is less prevalent) can be used to constrain dark matter physics. In the future, the Vera C. Rubin Observatory Legacy Survey of Space and Time will give precise measurements of the weak lensing profile and can be used to constrain $sigma_T/m$ at the $sim 1$ cm$^2$ g$^{-1}$ level at $vsim 2000$ km s$^{-1}$.
56 - Nilanjan Banik , Jo Bovy 2018
Gravitational encounters between small-scale dark matter substructure and cold stellar streams in the Milky Way halo lead to density perturbations in the latter, making streams an effective probe for detecting dark matter substructure. The Pal 5 stre am is one such system for which we have some of the best data. However, Pal 5 orbits close to the center of the Milky Way and has passed through the Galactic disk many times, where its structure can be perturbed by baryonic structures such as the Galactic bar and giant molecular clouds (GMCs). In order to understand how these baryonic structures affect Pal 5s density, we present a detailed study of the effects of the Galactic bar, spiral structure, GMCs, and globular clusters on the Pal 5 stream. We estimate the effect of each perturber on the stream density by computing its power spectrum and comparing it to the power induced by a CDM-like population of dark matter subhalos. We find that the bar and GMCs can each individually create power that is comparable to the observed power on large scales, leaving little room for dark matter substructure, while spirals are subdominant on all scales. On degree scales, the power induced by the bar is small, but GMCs create small-scale density variations that are similar in amplitude to the dark-matter induced variations but otherwise indistinguishable from it. These results demonstrate that Pal 5 is a poor system for constraining the dark matter substructure fraction and that observing streams further out in the halo will be necessary to confidently detect dark matter subhalos.
The NGC 1052 group, and in particular the discovery of two ultra diffuse galaxies with very low internal velocity dispersions, has been the subject of much attention recently. Here we present radial velocities for a sample of 77 globular clusters ass ociated with NGC 1052 obtained on the Keck telescope. Their mean velocity and velocity dispersion are consistent with that of the host galaxy. Using a simple tracer mass estimator, we infer the enclosed dynamical mass and dark matter fraction of NGC 1052. Extrapolating our measurements with an NFW mass profile we infer a total halo mass of 6.2 ($pm$0.2) $times$ 10$^{12}$ M$_{odot}$. This mass is fully consistent with that expected from the stellar mass--halo mass relation, suggesting that NGC 1052 has a normal dark matter halo mass (i.e. it is not deficient in dark matter in contrast to two ultra diffuse galaxies in the group). We present a phase space diagram showing the galaxies that lie within the projected virial radius (390 kpc) of NGC 1052. Finally, we briefly discuss the two dark matter deficient galaxies (NGC 1052--DF and DF4) and consider whether MOND can account for their low observed internal velocity dispersions.
We study the properties of the dark matter component of the radially anisotropic stellar population recently identified in the Gaia data, using magneto-hydrodynamical simulations of Milky Way-like halos from the Auriga project. We identify 10 simulat ed galaxies that approximately match the rotation curve and stellar mass of the Milky Way. Four of these have an anisotropic stellar population reminiscent of the Gaia structure. We find an anti-correlation between the dark matter mass fraction of this population in the Solar neighbourhood and its orbital anisotropy. We estimate the local dark matter density and velocity distribution for halos with and without the anisotropic stellar population, and use them to simulate the signals expected in future xenon and germanium direct detection experiments. We find that a generalized Maxwellian distribution fits the dark matter halo integrals of the Milky Way-like halos containing the radially anisotropic stellar population. For dark matter particle masses below approximately 10 GeV, direct detection exclusion limits for the simulated halos with the anisotropic stellar population show a mild shift towards smaller masses compared to the commonly adopted Standard Halo Model.
The spatial and velocity distributions of dark matter particles in the Milky Way Halo affect the signals expected to be observed in searches for dark matter. Results from direct detection experiments are often analyzed assuming a simple isothermal di stribution of dark matter, the Standard Halo Model (SHM). Yet there has been skepticism regarding the validity of this simple model due to the complicated gravitational collapse and merger history of actual galaxies. In this paper we compare the SHM to the results of cosmological hydrodynamical simulations of galaxy formation to investigate whether or not the SHM is a good representation of the true WIMP distribution in the analysis of direct detection data. We examine two Milky Way-like galaxies from the MaGICC cosmological simulations (a) with dark matter only and (b) with baryonic physics included. The inclusion of baryons drives the shape of the DM halo to become more spherical and makes the velocity distribution of dark matter particles less anisotropic especially at large heliocentric velocities, thereby making the SHM a better fit. We also note that we do not find a significant disk-like rotating dark matter component in either of the two galaxy halos with baryons that we examine, suggesting that dark disks are not a generic prediction of cosmological hydrodynamical simulations. We conclude that in the Solar neighborhood, the SHM is in fact a good approximation to the true dark matter distribution in these cosmological simulations (with baryons) which are reasonable representations of the Milky Way, and hence can also be used for the purpose of dark matter direct detection calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا