ﻻ يوجد ملخص باللغة العربية
We give a geometric classification of complex $n$-dimensional $2$-step nilpotent (all, commutative and anticommutative) algebras. Namely, has been found the number of irreducible components and their dimensions. As a corollary, we have a geometric classification of complex $5$-dimensional nilpotent associative algebras. In particular, it has been proven that this variety has $14$ irreducible components and $9$ rigid algebras.
We investigate Lie algebras whose Lie bracket is also an associative or cubic associative multiplication to characterize the class of nilpotent Lie algebras with a nilindex equal to 2 or 3. In particular we study the class of 2-step nilpotent Lie alg
We present algebraic and geometric classifications of the $4$-dimensional complex nilpotent right alternative algebras. Specifically, we find that, up to isomorphism, there are only $9$ non-isomorphic nontrivial nilpotent right alternative algebras.
The classification of complex of real finite dimensional Lie algebras which are not semi simple is still in its early stages. For example the nilpotent Lie algebras are classified only up to the dimension 7. Moreover, to recognize a given Lie algebra
We give the complete algebraic classification of all complex 4-dimensional nilpotent algebras. The final list has 234 (parametric families of) isomorphism classes of algebras, 66 of which are new in the literature.
In this paper we investigate the derivations of filiform Leibniz algebras. Recall that the set of filiform Leibniz algebras of fixed dimension is decomposed into three non-intersected families. We found sufficient conditions under which filiform Leib