ﻻ يوجد ملخص باللغة العربية
In a sharp contrast to the response of silica particles we show that the metal-dielectric Janus particles with boojum defects in a nematic liquid crystal are self-propelled under the action of an electric field applied perpendicular to the director. The particles can be transported along any direction in the plane of the sample by selecting the appropriate orientation of the Janus vector with respect to the director. The direction of motion of the particles is controllable by varying the field amplitude and frequency. The command demonstrated on the motility of the particles is promising for tunable transport and microrobotic applications.
We create controllable active particles in the form of metal-dielectric Janus colloids which acquire motility through a nematic liquid crystal film by transducing the energy of an imposed perpendicular AC electric field. We achieve complete command o
A gold-capped Janus particle suspended in a near-critical binary liquid mixture can self-propel under illumination. We have immobilized such a particle in a narrow channel and studied the nonequilibrium dynamics of a binary solvent around it, using e
We consider a mathematical model that describes the flow of a Nematic Liquid Crystal (NLC) film placed on a flat substrate, across which a spatially-varying electric potential is applied. Due to their polar nature, NLC molecules interact with the (no
The effect of superimposed ac and dc electric fields on the formation of electroconvection and flexoelectric patterns in nematic liquid crystals was studied. For selected ac frequencies an extended standard model of the electro-hydrodynamic instabili
We report a dynamic light scattering study of the fluctuation modes in a thermotropic liquid crystalline mixture of monomer and dimer compounds that exhibits the twist-bend nematic ($mathrm{N_{TB}}$) phase. The results reveal a spectrum of overdamped