ﻻ يوجد ملخص باللغة العربية
We employ stabilization methods and second order Poincare inequalities to establish rates of multivariate normal convergence for a large class of vectors $(H_s^{(1)},...,H_s^{(m)})$, $s geq 1$, of statistics of marked Poisson processes on $mathbb{R}^d$, $d geq 2$, as the intensity parameter $s$ tends to infinity. Our results are applicable whenever the constituent functionals $H_s^{(i)}$, $iin{1,...,m}$, are expressible as sums of exponentially stabilizing score functions satisfying a moment condition. The rates are for the $d_2$-, $d_3$-, and $d_{convex}$-distances. When we compare with a centered Gaussian random vector, whose covariance matrix is given by the asymptotic covariances, the rates are in general unimprovable and are governed by the rate of convergence of $s^{-1} {rm Cov}( H_s^{(i)}, H_s^{(j)})$, $i,jin{1,...,m}$, to the limiting covariance, shown to be of order $s^{-1/d}$. We use the general results to deduce rates of multivariate normal convergence for statistics arising in random graphs and topological data analysis as well as for multivariate statistics used to test equality of distributions. Some of our results hold for stabilizing functionals of Poisson input on suitable metric spaces.
This paper concerns the asymptotic behavior of a random variable $W_lambda$ resulting from the summation of the functionals of a Gibbsian spatial point process over windows $Q_lambda uparrow R^d$. We establish conditions ensuring that $W_lambda$ has
The Gaussian correlation inequality for multivariate zero-mean normal probabilities of symmetrical n-rectangles can be considered as an inequality for multivariate gamma distributions (in the sense of Krishnamoorthy and Parthasarathy [5]) with one de
We combine Steins method with Malliavin calculus in order to obtain explicit bounds in the multidimensional normal approximation (in the Wasserstein distance) of functionals of Gaussian fields. Our results generalize and refine the main findings by P
Correcting for skewness can result in more accurate tail probability approximations in the central limit theorem for sums of independent random variables. In this paper, we extend the theory to sums of local statistics of independent random variables
We investigate various geometric and functional inequalities for the class of log-concave probability sequences. We prove dilation inequalities for log-concave probability measures on the integers. A functional analog of this geometric inequality is