ﻻ يوجد ملخص باللغة العربية
Deep neural networks are known to be data-driven and label noise can have a marked impact on model performance. Recent studies have shown great robustness to classic image recognition even under a high noisy rate. In medical applications, learning from datasets with label noise is more challenging since medical imaging datasets tend to have asymmetric (class-dependent) noise and suffer from high observer variability. In this paper, we systematically discuss and define the two common types of label noise in medical images - disagreement label noise from inconsistency expert opinions and single-target label noise from wrong diagnosis record. We then propose an uncertainty estimation-based framework to handle these two label noise amid the medical image classification task. We design a dual-uncertainty estimation approach to measure the disagreement label noise and single-target label noise via Direct Uncertainty Prediction and Monte-Carlo-Dropout. A boosting-based curriculum training procedure is later introduced for robust learning. We demonstrate the effectiveness of our method by conducting extensive experiments on three different diseases: skin lesions, prostate cancer, and retinal diseases. We also release a large re-engineered database that consists of annotations from more than ten ophthalmologists with an unbiased golden standard dataset for evaluation and benchmarking.
The classification accuracy of deep learning models depends not only on the size of their training sets, but also on the quality of their labels. In medical image classification, large-scale datasets are becoming abundant, but their labels will be no
Among the three main components (data, labels, and models) of any supervised learning system, data and models have been the main subjects of active research. However, studying labels and their properties has received very little attention. Current pr
Multi-label image classification is the task of predicting a set of labels corresponding to objects, attributes or other entities present in an image. In this work we propose the Classification Transformer (C-Tran), a general framework for multi-labe
Recently, as an effective way of learning latent representations, contrastive learning has been increasingly popular and successful in various domains. The success of constrastive learning in single-label classifications motivates us to leverage this
Despite the state-of-the-art performance for medical image segmentation, deep convolutional neural networks (CNNs) have rarely provided uncertainty estimations regarding their segmentation outputs, e.g., model (epistemic) and image-based (aleatoric)