ﻻ يوجد ملخص باللغة العربية
Network meta-analysis (NMA) allows the combination of direct and indirect evidence from a set of randomized clinical trials. Performing NMA using individual patient data (IPD) is considered as a gold standard approach as it provides several advantages over NMA based on aggregate data. For example, it allows to perform advanced modelling of covariates or covariate-treatment interactions. An important issue in IPD NMA is the selection of influential parameters among terms that account for inconsistency, covariates, covariate-by-treatment interactions or non-proportionality of treatments effect for time to event data. This issue has not been deeply studied in the literature yet and in particular not for time-to-event data. A major difficulty is to jointly account for between-trial heterogeneity which could have a major influence on the selection process. The use of penalized generalized mixed effect model is a solution, but existing implementations have several shortcomings and an important computational cost that precludes their use for complex IPD NMA. In this article, we propose a penalized Poisson regression model to perform IPD NMA of time-to-event data. It is based only on fixed effect parameters which improve its computational cost over the use of random effects. It could be easily implemented using existing penalized regression package. Computer code is shared for implementation. The methods were applied on simulated data to illustrate the importance to take into account between trial heterogeneity during the selection procedure. Finally, it was applied to an IPD NMA of overall survival of chemotherapy and radiotherapy in nasopharyngeal carcinoma.
For survival data with high-dimensional covariates, results generated in the analysis of a single dataset are often unsatisfactory because of the small sample size. Integrative analysis pools raw data from multiple independent studies with comparable
Predicting risks of chronic diseases has become increasingly important in clinical practice. When a prediction model is developed in a given source cohort, there is often a great interest to apply the model to other cohorts. However, due to potential
In a network meta-analysis, some of the collected studies may deviate markedly from the others, for example having very unusual effect sizes. These deviating studies can be regarded as outlying with respect to the rest of the network and can be influ
The penalized Cox proportional hazard model is a popular analytical approach for survival data with a large number of covariates. Such problems are especially challenging when covariates vary over follow-up time (i.e., the covariates are time-depende
As an effective nonparametric method, empirical likelihood (EL) is appealing in combining estimating equations flexibly and adaptively for incorporating data information. To select important variables and estimating equations in the sparse high-dimen