ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiplicity of solutions for a scalar field equation involving a fractional $p$-Laplacian with general nonlinearity

179   0   0.0 ( 0 )
 نشر من قبل Hamilton Bueno
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the existence of infinitely many radially symmetric solutions to the following problem $$(-Delta_p)^s u=g(u) textrm{ in } mathbb{R}^N, uin W^{s,p}(mathbb{R}^N),$$ where $sin (0,1)$, $2 leq p < infty$, $sp leq N $, $2 leq N in mathbb{N}$ and $(-Delta_p)^s$ is the fractional $p$-Laplacian operator. We treat both of cases $sp=N$ and $sp<N.$ The nonlinearity $g$ is a function of Berestycki-Lions type with critical exponential growth if $sp=N$ and critical polynomial growth if $sp<N$. We also prove the existence of a ground state solution for the same problem.



قيم البحث

اقرأ أيضاً

In this paper we deal with the multiplicity of positive solutions to the fractional Laplacian equation begin{equation*} (-Delta)^{frac{alpha}{2}} u=lambda f(x)|u|^{q-2}u+|u|^{2^{*}_{alpha}-2}u, quadtext{in},,Omega, u=0,text{on},,partialOmega, end {equation*} where $Omegasubset mathbb{R}^{N}(Ngeq 2)$ is a bounded domain with smooth boundary, $0<alpha<2$, $(-Delta)^{frac{alpha}{2}}$ stands for the fractional Laplacian operator, $fin C(Omegatimesmathbb{R},mathbb{R})$ may be sign changing and $lambda$ is a positive parameter. We will prove that there exists $lambda_{*}>0$ such that the problem has at least two positive solutions for each $lambdain (0,,,lambda_{*})$. In addition, the concentration behavior of the solutions are investigated.
In this paper, we consider the following Kirchhoff type equation $$ -left(a+ bint_{R^3}| abla u|^2right)triangle {u}+V(x)u=f(u),,,xinR^3, $$ where $a,b>0$ and $fin C(R,R)$, and the potential $Vin C^1(R^3,R)$ is positive, bounded and satisfies suitabl e decay assumptions. By using a new perturbation approach together with a new version of global compactness lemma of Kirchhoff type, we prove the existence and multiplicity of bound state solutions for the above problem with a general nonlinearity. We especially point out that neither the corresponding Ambrosetti-Rabinowitz condition nor any monotonicity assumption is required for $f$. Moreover, the potential $V$ may not be radially symmetry or coercive. As a prototype, the nonlinear term involves the power-type nonlinearity $f(u) = |u|^{p-2}u$ for $pin (2, 6)$. In particular, our results generalize and improve the results by Li and Ye (J.Differential Equations, 257(2014): 566-600), in the sense that the case $pin(2,3]$ is left open there.
In this paper, we study a class of nonlinear Choquard type equations involving a general nonlinearity. By using the method of penalization argument, we show that there exists a family of solutions having multiple concentration regions which concentra te at the minimum points of the potential $V$. Moreover, the monotonicity of $f(s)/s$ and the so-called Ambrosetti-Rabinowitz condition are not required.
168 - Jinguo Zhang , Xiaochun Liu 2014
We establish the existence and multiplicity of positive solutions to the problems involving the fractional Laplacian: begin{equation*} left{begin{array}{lll} &(-Delta)^{s}u=lambda u^{p}+f(u),,,u>0 quad &mbox{in},,Omega, &u=0quad &mbox{in},,mathbb{R}^ {N}setminusOmega, end{array}right. end{equation*} where $Omegasubset mathbb{R}^{N}$ $(Ngeq 2)$ is a bounded smooth domain, $sin (0,1)$, $p>0$, $lambdain mathbb{R}$ and $(-Delta)^{s}$ stands for the fractional Laplacian. When $f$ oscillates near the origin or at infinity, via the variational argument we prove that the problem has arbitrarily many positive solutions and the number of solutions to problem is strongly influenced by $u^{p}$ and $lambda$. Moreover, various properties of the solutions are also described in $L^{infty}$- and $X^{s}_{0}(Omega)$-norms.
The aim of this paper is to establish two results about multiplicity of solutions to problems involving the $1-$Laplacian operator, with nonlinearities with critical growth. To be more specific, we study the following problem $$ left{ begin{array}{l} - Delta_1 u +xi frac{u}{|u|} =lambda |u|^{q-2}u+|u|^{1^*-2}u, quadtext{in }Omega, u=0, quadtext{on } partialOmega. end{array} right. $$ where $Omega$ is a smooth bounded domain in $mathbb{R}^N$, $N geq 2$ and $xi in{0,1}$. Moreover, $lambda > 0$, $q in (1,1^*)$ and $1^*=frac{N}{N-1}$. The first main result establishes the existence of many rotationally non-equivalent and nonradial solutions by assuming that $xi=1$, $Omega = {x in mathbb{R}^N,:,r < |x| < r+1}$, $Ngeq 2$, $N ot = 3$ and $r > 0$. In the second one, $Omega$ is a smooth bounded domain, $xi=0$, and the multiplicity of solutions is proved through an abstract result which involves genus theory for functionals which are sum of a $C^1$ functional with a convex lower semicontinuous functional.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا