ﻻ يوجد ملخص باللغة العربية
We investigate the existence of infinitely many radially symmetric solutions to the following problem $$(-Delta_p)^s u=g(u) textrm{ in } mathbb{R}^N, uin W^{s,p}(mathbb{R}^N),$$ where $sin (0,1)$, $2 leq p < infty$, $sp leq N $, $2 leq N in mathbb{N}$ and $(-Delta_p)^s$ is the fractional $p$-Laplacian operator. We treat both of cases $sp=N$ and $sp<N.$ The nonlinearity $g$ is a function of Berestycki-Lions type with critical exponential growth if $sp=N$ and critical polynomial growth if $sp<N$. We also prove the existence of a ground state solution for the same problem.
In this paper we deal with the multiplicity of positive solutions to the fractional Laplacian equation begin{equation*} (-Delta)^{frac{alpha}{2}} u=lambda f(x)|u|^{q-2}u+|u|^{2^{*}_{alpha}-2}u, quadtext{in},,Omega, u=0,text{on},,partialOmega, end
In this paper, we consider the following Kirchhoff type equation $$ -left(a+ bint_{R^3}| abla u|^2right)triangle {u}+V(x)u=f(u),,,xinR^3, $$ where $a,b>0$ and $fin C(R,R)$, and the potential $Vin C^1(R^3,R)$ is positive, bounded and satisfies suitabl
In this paper, we study a class of nonlinear Choquard type equations involving a general nonlinearity. By using the method of penalization argument, we show that there exists a family of solutions having multiple concentration regions which concentra
We establish the existence and multiplicity of positive solutions to the problems involving the fractional Laplacian: begin{equation*} left{begin{array}{lll} &(-Delta)^{s}u=lambda u^{p}+f(u),,,u>0 quad &mbox{in},,Omega, &u=0quad &mbox{in},,mathbb{R}^
The aim of this paper is to establish two results about multiplicity of solutions to problems involving the $1-$Laplacian operator, with nonlinearities with critical growth. To be more specific, we study the following problem $$ left{ begin{array}{l}