ﻻ يوجد ملخص باللغة العربية
This paper presents a constraint management strategy based on Scalar Reference Governors (SRG) to enforce output, state, and control constraints while taking into account the preview information of the reference and/or disturbances signals. The strategy, referred to as the Preview Reference Governor (PRG), can outperform SRG while maintaining the highly-attractive computational benefits of SRG. However, as it is shown, the performance of PRG may suffer if large preview horizons are used. An extension of PRG, referred to as Multi-horizon PRG, is proposed to remedy this issue. Quantitative comparisons between SRG, PRG, and Multi-horizon PRG on a one-link robot arm example are presented to illustrate their performance and computation time. Furthermore, extensions of PRG are presented to handle systems with disturbance preview and multi-input systems. The robustness of PRG to parametric uncertainties and inaccurate preview information is also explored.
This paper presents a computationally efficient solution for constraint management of multi-input and multi-output (MIMO) systems. The solution, referred to as the Decoupled Reference Governor (DRG), maintains the highly-attractive computational feat
Incorporating predictions of external inputs, which can otherwise be treated as disturbances, has been widely studied in control and computer science communities. These predictions are commonly referred to as preview in optimal control and lookahead
This paper considers the problem of safety controller synthesis for systems equipped with sensor modalities that can provide preview information. We consider switched systems where switching mode is an external signal for which preview information is
This paper deals with the lateral control of a convoy of autonomous and connected following vehicles (ACVs) for executing an Emergency Lane Change (ELC) maneuver. Typically, an ELC maneuver is triggered by emergency cues from the front or the end of
We here present preliminary results on a parameter scan of the THDMa, a new physics model that extends the scalar sector of the Standard Model by an additional doublet as well as a pseudoscalar singlet. In the gauge-eigenbasis, the additional pseudos