ترغب بنشر مسار تعليمي؟ اضغط هنا

Masses of positive- and negative-parity hadron ground-states, including those with heavy quarks

81   0   0.0 ( 0 )
 نشر من قبل Craig Roberts
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A symmetry-preserving treatment of a vector$times$vector contact interaction is used to compute spectra of ground-state $J^P = 0^pm, 1^pm$ $(fbar g)$ mesons, their partner diquark correlations, and $J^P=1/2^pm, 3/2^pm$ $(fgh)$ baryons, where $f,g,h in {u,d,s,c,b}$. Results for the leptonic decay constants of all mesons are also obtained, including scalar and pseudovector states involving heavy quarks. The spectrum of baryons produced by this chiefly algebraic approach reproduces the 64 masses known empirically or computed using lattice-regularised quantum chromodynamics with an accuracy of 1.4(1.2)%. It also has the richness of states typical of constituent-quark models and predicts many baryon states that have not yet been observed. The study indicates that dynamical, nonpointlike diquark correlations play an important role in all baryons; and, typically, the lightest allowed diquark is the most important component of a baryons Faddeev amplitude.



قيم البحث

اقرأ أيضاً

The discovery of $Xi_{cc}^{++}$ by the LHCb Collaboration triggers predictions of more doubly charmed baryons. By taking into account both the $P$-wave excitations between the two charm quarks and the scattering of light pseudoscalar mesons off the g round state doubly charmed baryons, a set of negative-parity spin-1/2 doubly charmed baryons are predicted already from a unitarized version of leading order chiral perturbation theory. Moreover, employing heavy antiquark-diquark symmetry the relevant low-energy constants in the next-to-leading order are connected with those describing light pseudoscalar mesons scattering off charmed mesons, which have been well determined from lattice calculations and experimental data. Our calculations result in a spectrum richer than that of heavy mesons. We find two very narrow $J^P=1/2^-$ $Omega_{cc}^P$, which very likely decay into $Omega_{cc}pi^0$ breaking isospin symmetry. In the isospin-1/2 $Xi_{cc}^P$ sector, three states are predicted to exist below 4.2~GeV with the lowest one being narrow and the other two rather broad. We suggest to search for the $Xi_{cc}^{P}$ states in the $Xi_{cc}^{++}pi^-$ mode. Searching for them and their analogues are helpful to establish the hadron spectrum.
114 - M. Abud , F. Buccella , D. Falcone 2008
We present the spectrum of the lightest pentaquark states of both parities and compare it with the present experimental evidence for these states. We have assumed that the main role for their mass splittings is played by the chromo-magnetic interacti on. We have also kept into account the $SU(3)_F$ breaking for their contribution and for the spin orbit term. The resulting pattern is in good agreement with experiment.
We calculate the masses of the $QQbar{q}bar{q}$ ($Q=c,b$; $q=u,d,s$) tetraquark states with the aid of heavy diquark-antiquark symmetry (HDAS) and the chromomagnetic interaction (CMI) model. The masses of the highest-spin ($J=2$) tetraquarks that hav e only the $(QQ)_{bar{3}_c}(bar{q}bar{q})_{3_c}$ color structure are related with those of conventional hadrons using HDAS. Thereafter, the masses of their partner states are determined with the mass splittings in the CMI model. Our numerical results reveal that: (i) the lightest $ccbar{n}bar{n}$ ($n=u,d$) is an $I(J^P)=0(1^+)$ state around 3929 MeV (53 MeV above the $DD^*$ threshold) and none of the double-charm tetraquarks are stable; (ii) the stable double-bottom tetraquarks are the lowest $0(1^+)$ $bbbar{n}bar{n}$ around 10488 MeV ($approx116$ MeV below the $BB^*$ threshold) and the lowest $1/2(1^+)$ $bbbar{n}bar{s}$ around 10671 MeV ($approx20$ MeV below the $BB_s^*/B_sB^*$ threshold); and (iii) the two lowest $bcbar{n}bar{n}$ tetraquarks, namely the lowest $0(0^+)$ around 7167 MeV and the lowest $0(1^+)$ around 7223 MeV, are near-threshold states. Moreover, we discuss the constraints on the masses of double-heavy hadrons. Specifically, for the lowest nonstrange tetraquarks, we obtain $T_{cc}<3965$ MeV, $T_{bb}<10627$ MeV, and $T_{bc}<7199$ MeV.
157 - Jing Wu , Yan-Rui Liu , Kan Chen 2016
In the framework of the color-magnetic interaction, we systematically investigate the mass spectrum of the tetraquark states composed of four heavy quarks with the $QQbar Qbar Q$ configuration in this work. We also show their strong decay patterns. S table or narrow states in the $bbbar{b}bar{c}$ and $bcbar{b}bar{c}$ systems are found to be possible. We hope the studies shall be helpful to the experimental search for heavy-full exotic tetraquark states.
Tremendous progress has been made experimentally in the hadron spectrum containing heavy quarks in the last two decades. It is surprising that many resonant structures are around thresholds of a pair of heavy hadrons. There should be a threshold cusp at any $S$-wave threshold. By constructing a nonrelativistic effective field theory with open channels, we discuss the generalities of threshold behavior, and offer an explanation of the abundance of near-threshold peaks in the heavy quarkonium regime. We show that the threshold cusp can show up as a peak only for channels with attractive interaction, and the width of the cusp is inversely proportional to the reduced mass relevant for the threshold. We argue that there should be threshold structures at any threshold of a pair of heavy-quark and heavy-antiquark hadrons, which have attractive interaction at threshold, in the invariant mass distribution of a heavy quarkonium and light hadrons that couple to that open-flavor hadron pair. The structure becomes more pronounced if there is a near-threshold pole. Predictions of the possible pairs are also given for the ground state heavy hadrons. Precisely measuring the threshold structures will play an important role in revealing the heavy-hadron interactions, and thus understanding the puzzling hidden-charm and hidden-bottom structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا