ﻻ يوجد ملخص باللغة العربية
A lipid coated bubble (LCB) oscillator is a very interesting non-smooth oscillator with many important applications ranging from industry and chemistry to medicine. However, due to the complex behavior of the coating intermixed with the nonlinear behavior of the bubble itself, the dynamics of the LCB are not well understood. In this work, lipid coated Definity microbubbles (MBs) were sonicated with 25 MHz 30 cycle pulses with pressure amplitudes between 70kPa-300kPa. Here, we report higher order subharmonics in the scattered signals of single MBs at low amplitude high frequency ultrasound excitations. Experimental observations reveal the generation of period 2(P2), P3, and two different P4 oscillations at low excitation amplitude. Despite the reduced damping of the uncoated bubble system, such enhanced nonlinear oscillations has not been observed and can not be theoretically explained for the uncoated bubble. To investigate the mechanism of the enhanced nonlinearity, the bifurcation structure of the lipid coated MBs is studied for a wide range of MBs sizes and shell parameters. Consistent with the experimental results, we show that this unique oscillator can exhibit chaotic oscillations and higher order subharmonics at excitation amplitudes considerably below those predicted by the uncoated oscillator. Buckling or rupture of the shell and the dynamic variation of the shell elasticity causes the intensified non-linearity at low excitations. The simulated scattered pressure by single MBs are in good agreement with the experimental signals.
We show that simulations of polymer rheology at a fluctuating mesoscopic scale and at the macroscopic scale where flow instabilities occur can be achieved at the same time with dissipative particle dynamics (DPD) technique.} We model the visco-elasti
We propose a new approach to the generation of acoustic frequency combs (AFC) -- signals with spectra containing equidistant coherent peaks. AFCs are essential for a number of sensing and measurement applications, where the established technology of
Acoustic frequency combs leverage unique properties of the optical frequency comb technology in high-precision measurements and innovative sensing in optically inaccessible environments such as under water, under ground or inside living organisms. Be
Liquid drops and vibrations are ubiquitous in both everyday life and technology, and their combination can often result in fascinating physical phenomena opening up intriguing opportunities for practical applications in biology, medicine, chemistry a
We numerically investigate the effect of non-condensable gas inside a vapor bubble on bubble dynamics, collapse pressure and pressure impact of spherical and aspherical bubble collapses. Free gas inside a vapor bubble has a damping effect that can we